

THE CORPORATION OF THE CITY OF VERNON REPORT TO COUNCIL

SUBMITTED BY: Matt Faucher Current Planner

COUNCIL MEETING: REG ⊠ COW □ I/C □ COUNCIL MEETING DATE: August 15, 2022 REPORT DATE: August 3, 2022 FILE: 3090-20 (DVP00552)

SUBJECT: DEVELOPMENT VARIANCE PERMIT APPLICATION FOR 3351 ALEXIS PARK DRIVE

PURPOSE:

To review Development Variance Permit application 00552 (DVP00552) to vary Zoning Bylaw 5000 to permit construction on slopes greater than 30% and decrease the number of required parking spaces at 3351 Alexis Park Drive. Additionally, the application proposes to vary Subdivision & Development Servicing Bylaw 3843 to allow all-turn access to Alexis Park Drive.

RECOMMENDATION:

THAT Council support Development Variance Permit Application 00552 (DVP00552) to vary Zoning Bylaw 5000 on LT A, DL 72, ODYD, PL KAP57410 (3351 Alexis Park Drive) as follows:

- a) Section 4.16.1 to allow the construction of buildings, structures and swimming pools on slopes greater than 30%;
- b) Section 7.1.2 to decrease the quantity of required parking spaces from 143 stalls to 117 stalls (reduction of 26 stalls);

AND FURTHER, that Council support Development Variance Permit Application 00552 to vary Subdivision & Development Servicing Bylaw 3843 on LT A, DL 72 ODYD, PL KAP57410 (3351 Alexis Park Drive) as follows:

a) Section 3.5.7 to permit an access to an arterial road where annual average daily traffic volumes exceed 5000 that is not limited to right in and out movements only without the provision of a designated turn lane.

AND FURTHER, that Council's support of DVP00552 is subject to the following:

- a) That the site plan, intended to illustrate the siting of structures, drive access and parking (Attachment 1) in the report titled "Development Variance Permit Application for 3351 Alexis Park Drive" dated August 3, 2022 and respectfully submitted by the Current Planner, be attached to and form part of DVP00552 as Schedule 'A';
- b) That a restrictive covenant be registered on title to ensure that the recommendations of the geotechnical report are implemented at the building permit stage, that the areas with slopes greater than 30% that are not required for development remain undisturbed and that the covenant terms provide for future public access through the development to Becker Park and allow establishment of infrastructure required to accommodate a future trail network.

ALTERNATIVES & IMPLICATIONS:

THAT Council not support Development Variance Permit Application 00552 (DVP00552) as outlined in the report titled "Development Variance Permit Application for 3351 Alexis Park Drive" dated August 3, 2022 and respectfully submitted by the Current Planner to vary Zoning Bylaw 5000 on LT A, DL 72, ODYD, PL KAP57410 (3351 Alexis Park Drive) as follows:

- a) Section 4.16.1 to allow the construction of buildings, structures and swimming pools on slopes greater than 30%; and
- b) Section 7.1.2 to decrease the quantity of required parking spaces from 143 stalls to 115 stalls (reduction of 28 stalls).

AND FURTHER, that Council not support Development Variance Permit Application 00552 to vary Subdivision & Development Servicing Bylaw 3843 on LT A, DL 72 ODYD, PL KAP57410 (3351 Alexis Park Drive) as follows:

a) Section 3.5.7 to permit an access to an arterial road where annual average daily traffic volumes exceed 5000 that is not limited to right in and out movements only without the provision of a designated turn lane.

Note: This alternative does not support the development variance permit application and would require the applicant and owner to develop the site in compliance with Zoning Bylaw 5000 and Subdivision & Development Servicing Bylaw 3843.

ANALYSIS:

A. Committee Recommendations:

At its meeting of March 15, 2022, the Advisory Planning Committee passed the following resolution:

"THAT Council support Development Variance Permit Application 00552 (DVP00552) to vary Zoning Bylaw 5000 on LT A, DL 72, ODYD, PL KAP57410 (3351 Alexis Park Drive) as follows:

- a) Section 4.16.1 to allow the construction of buildings, structures and swimming pools on slopes greater than 30%;
- b) Section 7.1.2 to decrease the quantity of required parking spaces from 143 stalls to 115 stalls (reduction of 28 stalls);

AND FURTHER, that Council's support of DVP00552 is subject to the following:

- That the site plan, intended to illustrate the siting of structures, drive access and parking (Attachment 1) in the report titled "Development Variance Permit Application for 3351 Alexis Park Drive" dated March 11, 2022 and respectfully submitted by the Current Planner, be attached to and form part of DVP00552 as Schedule 'A';
- 2. That a restrictive covenant be registered on title to ensure that the recommendations of the geo-technical report are implemented at the building permit stage, that the areas with slopes greater than 30% that are not required for development remain undisturbed and that the covenant terms provide for future public access through the development to Becker Park and allow establishment of infrastructure required to accommodate a future trail network."

B. Rationale:

- 1. The subject property is located at 3351 Alexis Park Drive (Figures 1, 2 and 3). The property is approximately 11,611m² (2.87ac) in size.
- 2. The purpose of the application is to vary two provisions of Zoning Bylaw 5000 in order to construct a ten story 91-unit mixed use development on the subject property that contains 518.6m² of ground floor retail space (Attachment 1). The proposed tenure of the residential units is purpose built longterm rental.
- 3. Subsequent to the applications review by the Advisory Planning Committee, it was determined that the proposal requires a variance to Subdivision & Development Servicing Bylaw 3843. The regulation in Section 3.5.7 (Attachment 2) requires that the turning movements for the access on Alexis Park Drive be limited to right in and right out only. The applicant has provided a Transportation Impact Assessment (Attachment 3) in support of the variance recommending that an all-turns movement at the site access be permitted based on their analysis of the site conditions and available options.
- 4. The subject property is zoned RH3 High-Rise Apartment Residential (Attachment 4) and the subject application pertains to development regulations within Section 4.16.1 (30% slopes) and Section 7.1.2 (minimum parking requirements) of Zoning Bylaw 5000 (Attachment 5 and 6).
- 5. The application proposes to vary Section 4.16.1 of Zoning Bylaw 5000 in order to allow the proposed structures and access drive to be located on slopes exceeding 30% grade. Additionally, the application proposes to vary Section 7.1.2 of Zoning Bylaw 5000 in order to decrease the quantity of required parking stall from 143 to 117 stalls (reduction of 26 stalls).
- 6. In support of the request to allow construction on slopes greater than 30%, the applicant retained a geotechnical engineer to conduct a preliminary assessment of the site and plans for the proposed development (Attachment 7). The report indicates that "from a geotechnical perspective, the proposed development is feasible, given that our recommendations presented in this report are followed as indicated and Tetra Tech is fully involved during construction to provide field reviews to confirm the work is carried out in general accordance with the intent of our recommendations."
- 7. To ensure that slope integrity of the remainder of the property is protected, it is recommended that a restrictive covenant be registered on the property's title to ensure that no additional development or disturbance occurs on the remaining portions of the lands with slopes greater than 30%. Future phases of the development may include trails and access to Becker Park. The covenant would be drafted to

Figure 1 - Property Location Map

Figure 2: Aerial Photo of Property

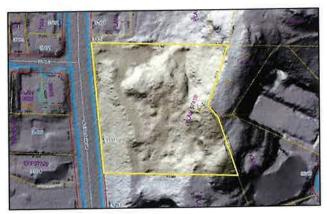


Figure 3: Lidar Imagery of Property

provide public access through the development and establishment of infrastructure required to accommodate a future trail network.

- 8. In order to support of the request to decrease the quantity of required parking spaces from 143 stalls to 117 stalls (reduction of 26 stalls), the applicant retained WSP to review parking requirements of the development and has provided the City with a parking relaxation study report (Attachment 8) to support the reduction in parking requirements. The report states: "The maximum parking demand for the proposed mixed-use development is anticipated to be 115 spaces which is expected to be in December when the retail reaches its peak demand". The original application proposed to pursue a variance to the minimum bicycle space requirements, however, through discussion with the applicant, the proposal now includes a total of 34 Class II and 60 Class I bicycle spaces which exceeds bylaw requirements.
- 9. Subsequent to the applications review by the Advisory Planning Committee, Administration worked with the applicant to revise the vehicle and bicycle parking plan. The revised configuration includes the following:
 - a. Two additional vehicle parking stalls reducing the requested variance to 26 stalls;
 - b. Three large loading stalls suitable for a typical 15' moving truck;
 - c. One commercial loading stall suitable for a typical courier delivery van;
 - d. Twelve additional Class I bicycle stalls for a total of 60;
 - e. Four additional Class II bicycle stalls for a total of 34;
 - f. The developer has agreed to provide a new bus stop and shelter with the design and location to be coordinated with BC Transit and the City; and
 - g. Provision of a ramp, designed to barrier free building code requirements, between the development and the sidewalk/bike lanes on Alexis Park Drive.

The applicant has also provided an updated Parking Relaxation Study to support their requested variance to reduce the parking requirements for the proposed development.

- 10. Section 28.26(a) of the Official Community Plan (OCP) requires that any multifamily or commercial development in the Centennial Drive/Becker Park area respect a maximum elevation of 419m (1,375ft) contour line. The applicant is not seeking to increase the height of the structure beyond 419m. The application does propose to have an elevator overrun (~421.05m) that exceeds this limit but does not exceed the Becker Park top of hill (422m). Based on a review of the covenant, as well as the City's methodology utilized in determining height of a structure, the applicant has met the requirements as outlined in the covenant and OCP.
- 11. Administration supports the requested variances for the following reasons:
 - a) The existing lot is zoned for high density residential use (RH3 High-Rise Apartment Residential Zone);
 - b) The applicant has retained a qualified geotechnical engineer to assess the site and make recommendations to safely develop the site. The site has been previously disturbed and the proposed alterations would improve existing conditions, as well as support the development. A restrictive covenant is recommended to be registered on title to ensure that the geotechnical engineering requirements are implemented at the building permit stage and disturbance of areas with slopes greater than 30% outside the requirements of the development are protected from future development;
 - c) The applicant has retained a qualified traffic engineer to assess the site and make recommendations with respect to the parking demand that the proposed development would generate. The report based its recommendations on the Parking Generation Manual prepared by the Institute of Transportation Engineers (ITE), which is established as an industry standard guidance document;

- d) The applicant has provided a Transportation Impact Assessment prepared by a qualified traffic engineer to confirm the design of the access and impacts on the surrounding road network.
- e) The application is proposing to create 91 purpose built rental units in phase one with the potential for additional units to be created in future phases.
- f) The site is well positioned for a multi-family project given its proximity to the City Centre (i.e. shopping services) and transit.

C. Attachments:

Attachment 1 – Site plan and Elevations

- Attachment 2 Schedule B Section 3.5.7 of Subdivision & Development Servicing Bylaw 3843
- Attachment 3 Traffic Impact Assessment, prepared by Bunt & Associates
- Attachment 4 RH3 High-Rise Apartment Residential Zone
- Attachment 5 Section 4.16.1, Section 7.1.2 of Zoning Bylaw 5000
- Attachment 6 Applicable sections of Table 7.1 and 7.3 of Zoning Bylaw 5000
- Attachment 7 Preliminary Geotechnical Assessment Report, prepared by Tetra Tech
- Attachment 8 Parking Relaxation Study, prepared by WSP

D. Council's Strategic Plan 2019 – 2022 Goals/Action Items:

The subject application involves the following goals/action items in Council's Strategic Plan 2019 – 2022:

Support the creation of affordable and attainable housing within the City.

E. Relevant Policy/Bylaws/Resolutions:

- 1. The following provisions of Zoning Bylaw 5000 is relevant to the subject application:
 - Section 4.16.1 No construction of a building, structure or swimming pool is permitted on slopes 30% or greater.
 - Section 7.1.2 The minimum number of on-site vehicle parking spaces required for each use is specified in the Parking Schedule (Table 7.1) except where additional parking is required by the Ministry of Transportation and Infrastructure if the site has direct access to a provincial highway. Where the total number of parking spaces on a property exceeds 15 parking spaces, the maximum number of parking spaces for each use class may be up to 125% of the minimum number of required parking spaces.
- 2. The following provision of Official Community Plan 5470 is relevant to the subject application:

Section 28.26(a) The rooflines of all buildings and structures shall not extend or project about the 419 metre (1375 feet) park elevation contour line.

- 3. The following provision of Subdivision & Development Servicing Bylaw 3843 is relevant to the subject application:
 - Section 3.5.7 Access to Arterial roads as the only, or a primary means of access or egress to development is subject to no other lower classification road access being available to that lot. Access to an Arterial road where Annual Average Daily Traffic (AADT) volumes exceed 5000 must be limited to right in and out movements only or provide a designated turn lane, where supported. Existing agricultural and low

Approved for submission to Council:

10. August. 2022

Will Pearce, CAO

Date:

BUDGET/RESOURCE IMPLICATIONS:

N/A

Prepared by:

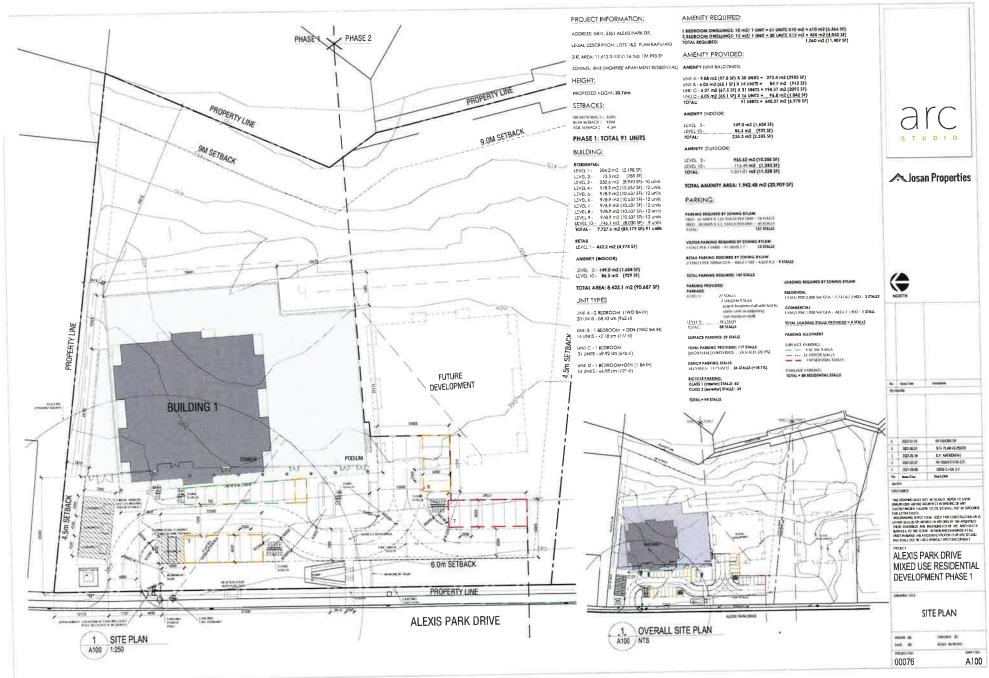
Signer 1 Matt Faucher, CPT Planner

Signer 2 Kim Flick Director, Community Infrastructure and Development

REVIEWED WITH

Corporate Services

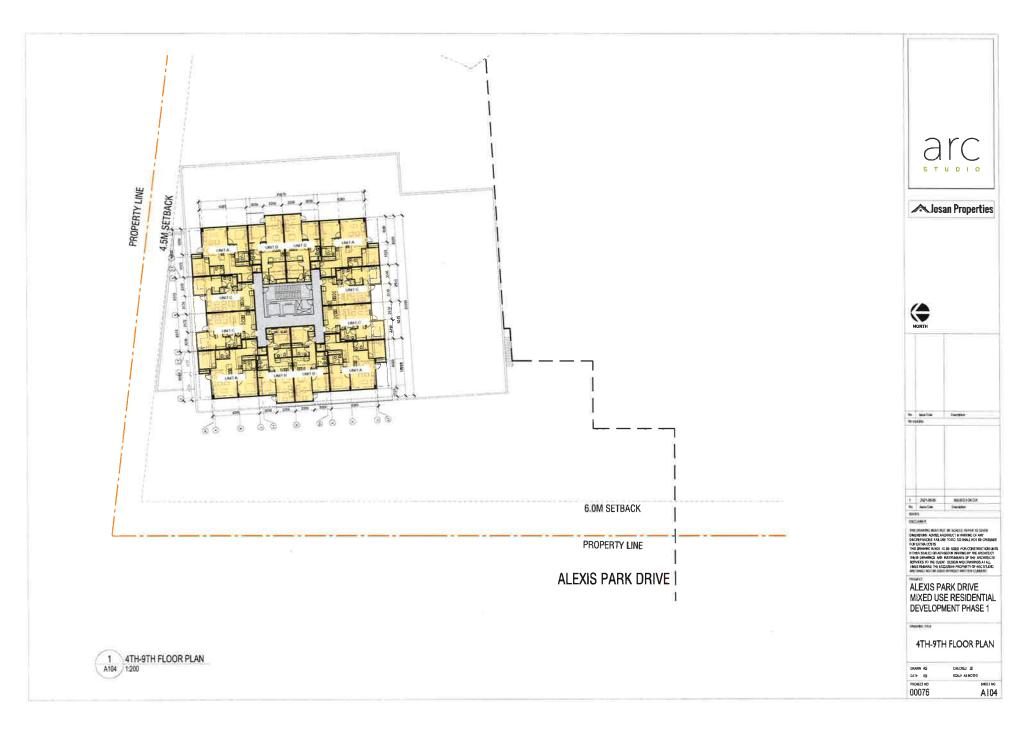
Bylaw Compliance

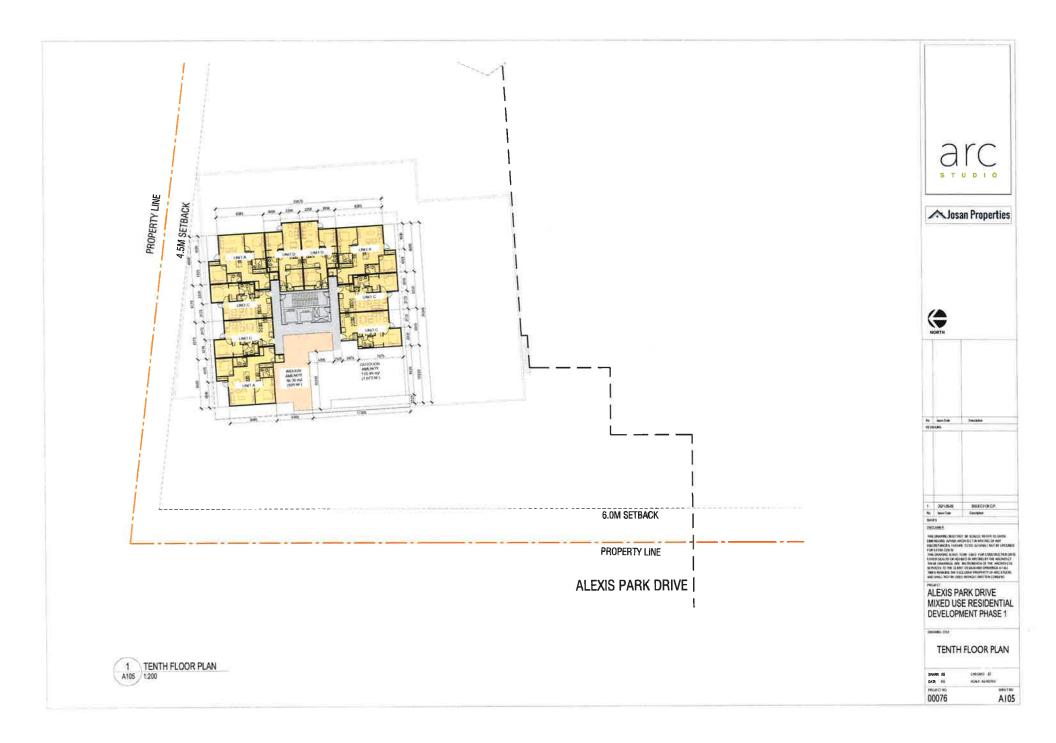

- Real Estate
- Fire & Rescue Services
- Human Resources
- Financial Services
- ☑ COMMITTEE: APC (Mar.15/2022)
- □ OTHER:

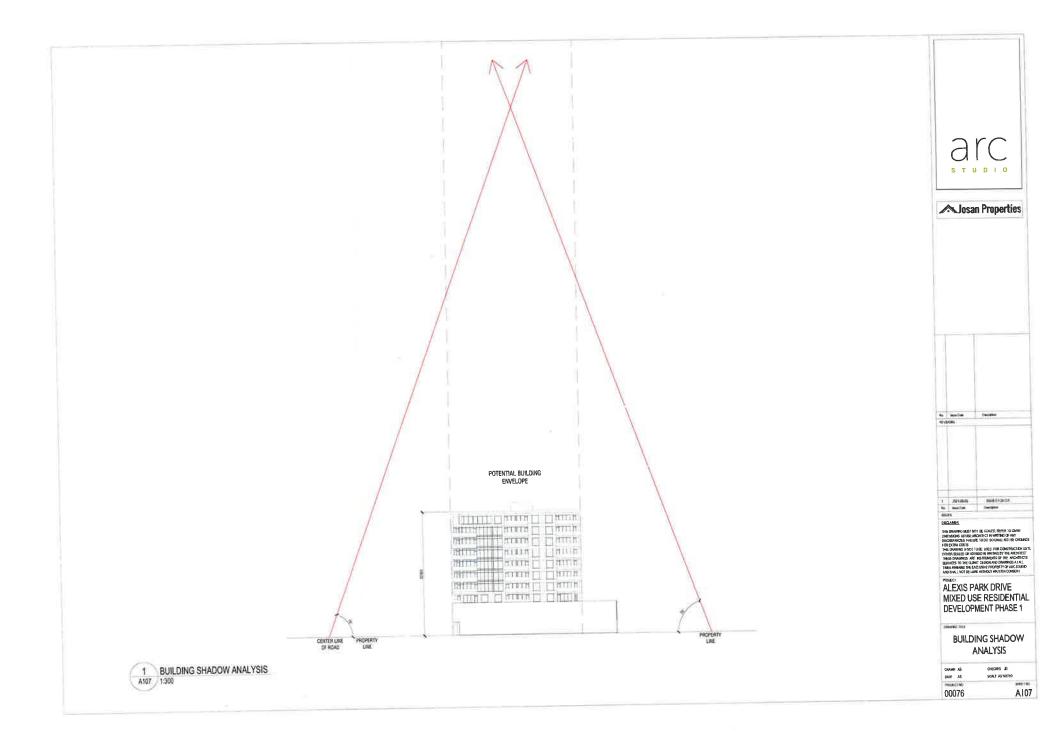
- Operations
 - Public Works/Airport
 - □ Facilities
 - Utilities
- Recreation Services
- Parks


- ☑ Current Planning
- Long Range Planning & Sustainability
- Building & Licensing
- ⊠ Engineering Development Services
- Infrastructure Management
- ☑ Transportation
- Economic Development & Tourism

G:\3000-3699 LAND ADMINISTRATION\3090 DEVELOPMENT VARIANCE PERMITS\20 Applications\DVP00552\2 PROC\Rpt\220803_mf_Council Rpt_DVP00552.docx







BYLAW NUMBER 3843 SCHEDULE B – TRANSPORTATION

- 3.5.7 Access to Arterial roads as the only, or a primary means of access or egress to development is subject to no other lower classification road access being available to that lot. Access to an Arterial road where Annual Average Daily Traffic (AADT) volumes exceed 5000 must be limited to right in and out movements only or provide a designated turn lane, where supported. Existing agricultural and low density residential lands applying for minor additions to existing buildings are exempted from providing these works.
- 3.5.8 Access to Collector roads as the only or primary means of access or egress for development is subject to no Local road or lane access being available to that lot. Access to a Collector roads where Annual Average Daily Traffic (AADT) volumes exceed 5000 must be limited to right in and out movements only, where no turn lane exists.
- 3.5.9 Access to rural roads where a drainage route exists, is subject to provision of ditching along the lot frontage and installation of a culvert at least 450mm in diameter across the driveway, extending a minimum of 1m beyond the toe of slope in each direction.

3.6 Lanes

When corners or T-intersections are unavoidable, additional road dedication and construction at these corners is required based on tracking of the largest anticipated vehicle utilizing the lanes. Additional road dedication required is to be based on truck turning template design or historical evidence at the location where available. Where road dedication would create a non-conformity for an existing building a SROW may be used subject to a road reserve also being registered on the area.

3.7 Cul-de-Sacs

Cul-de-sac roads shall not exceed 200m in length and provide a turn around within 30m of the end. The City Engineer may accept cul-de-sacs up to 400m in length where an emergency access road is provided at the end of the cul-de-sac, subject to provision of a mid point bulb with a turning radius on no less than 11m. Cul-de-sac turnaround bulb design must conform to standard drawing in Schedule O of this Bylaw.

3.8 Emergency Access

Emergency access roads are required in Development District 3 for road extensions more than 300m in length. A gate or removable bollard with a lock is required at both ends of an emergency access to prohibit public vehicle use. Permanent emergency access roads are to be built to lane structure standards with a minimum width of 4m. Road grades are not to exceed 15%. Horizontal

Attachment 3

TRANSPORTATION PLANNERS AND ENGINEERS

The Hills Vernon

Transportation Impact Assessment

Final Report

Prepared for Josan Ventures Inc.

Date March 29, 2022

Project Number 02-22-0014

City File Number DVP00552

CORPORATE AUTHORIZATION

Prepared By:	Amrit Uppal, P.Eng.
	Daniel Blischak, EIT

Reviewed By: Ezekiel Dada, Ph.D., P.Eng. Principal

Approved By:

Amrit Uppal, P.Eng. Associate Bunt & Associates Engineering Ltd. #113 – 334 11 Avenue SE Calgary, AB T2G 0Y2

Telephone: (403) 252-3343

 Date:
 2022-03-29

 Project #:
 02-22-0014

 Status:
 Final

Authenticated Date: JULY 14, 2022

EGBC Permit #: 1000468

This document entitled "The Hills Vernon Transportation Impact Assessment" was prepared by Bunt & Associates for the benefit of the client to whom it is addressed, in support of their application to the City of Vernon. The analysis and conclusions/recommendations in the report reflect Bunt & Associates' best professional judgment in light of the knowledge and information available to Bunt & Associates at the time of preparation.

The City of Vernon shall be entitled to rely on this report for the specific purpose for which it was prepared. The City of Vernon may provide copies of the report to City of Vernon Council, City of Vernon Employees, and City of Vernon Regulatory Boards, each of whom shall also be entitled to rely on this report in their official capacities for the specific purpose for which the report was prepared. The City of Vernon may also provide copies of the report to external governmental bodies having jurisdiction related to the project for which it was prepared.

Any use made of this report by a third party beyond those specifically noted here, or any reliance on or decisions based on it by any such third party, are the responsibility of such third parties. Bunt & Associates accepts no responsibility for damages, if any, suffered by such third parties as a result of decisions made or actions based on this report.

The Hills Vernon | Transportation Impact Assessment | Final Project No 02-22-0014 | March 2022

TABLE OF CONTENTS

1.	EXEC	ECUTIVE SUMMARY							
2.									
	2.1		f Work						
	2.2	Site Cor	ntext	2					
3.	3. DEVELOPMENT								
	3.1								
	3.2		neration						
	3.3		tribution						
	3.4	Access.		5					
4.	VEHI	CLES	٤	3					
	4.1	Road No	etwork 8	3					
	4.2	Intersec	tions 8	3					
	4.3	Volume	s {						
		4.3.1	Existing						
		4.3.2	Background						
		4.3.3	After Development						
	4.4		tion Analysis						
	4.5	-	Varrant Analysis						
	4.6		Review						
5.	ACTI		ANSPORTATION						
	5.1 Walking								
	5.2								
	5.3	Transit.)					

APPENDIX A Traffic Data

APPENDIX B Synchro & Warrant Outputs

APPENDIX C Access Concepts

EXHIBITS

Exhibit 3.1: Site Traffic Distribution	. 6
Exhibit 3.2: Site Traffic Volumes	. 7
Exhibit 4.1: Existing Intersection Configurations	10
Exhibit 4.2: Existing Traffic Volumes	11
Exhibit 4.3: Background Traffic Volumes	12
Exhibit 4.4: After Development Traffic Volumes	

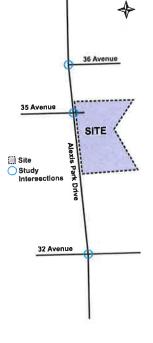
The Hills Vernon | Transportation Impact Assessment | Final Project No. 02-22-0014 | March 2022

_

FIGURES

3 4
4 8
18 19
20

TABLES


TABLES	. 1
Table 1.1: Trip Generation	1
Table 1.1: Trip Generation Table 1.2: Findings & Recommendations Table 3.1: Proposed Densities	4
Table 3.1: Proposed Densities	5
Table 3.1: Proposed Densities Table 3.2: Trip Generation Rates	5
Table 3.2: Trip Generation Rates Table 3.3: Vehicle Trip Generation	8
Table 3.3: Vehicle Trip Generation Table 4.1: Existing Roadway Characteristics	8
Table 4.1: Existing Roadway Characteristics Table 4.2: Traffic Data Summary Table 4.3: Pre-Covid Data Comparison (Highway 97)	. 9
Table 4.3: Pre-Covid Data Comparison (Highway 97)	.14
Table 4.4: Intersection Analysis (Alexis Park Drive & 35 Avenue) Table 4.5: Intersection Analysis (Alexis Park Drive & 36 Avenue)	. 15
Table 4.5: Intersection Analysis (Alexis Park Drive & 36 Avenue) Table 4.6: Intersection Analysis (Alexis Park Drive & 32 Avenue)	. 16
Table 4.6: Intersection Analysis (Alexis Park Drive & 32 Avenue) Table 4.7: Signal Warrant Analysis Table 5.1: Existing Transit Stops	. 20
Table 5.1: Existing Transit Stops	. 20
Table 5.1: Existing Transit Stops Table 5.2: Existing Transit Frequency	

1. EXECUTIVE SUMMARY

Josan Ventures Inc. is seeking a development variance permit for a site located at 3281, 3351, 3401 Alexis Park Drive. The City of Vernon requested a Transportation Impact Assessment (TIA) to review the transportation impacts of the proposed development.

The proposed building will have ground floor retail and above grade residential. Two potential future buildings are not part of the application; however they are accounted for in this traffic analysis to provide a conservative analysis.

Proposed densities and forecasted trip generation are summarized in **Table 1.1**. Study findings and recommendations are identified in **Table 1.2**.

Table 1.1: Trip Generation

	USE	DENSITY	HOURLY VEHICLE TRIPS		
BUILDING	USE		AM Peak	PM Peak	
	Multi-Family Residential	91 units	33	40	
1	Commercial	463 m ²	5	19	
2 (Euturo)	Multi-Family Residential	89 units	32	39	
2 (Future) 3 (Future)	Multi-Family Residential	89 units	32	39	
	Commercial	463 m ²	5	19	
		TOTAL	107	156	

Table 1.2: Findings & Recommendations

SECTION		FINDINGS				
Vehicles	Intersections	Alexis Park Drive & 35 Avenue (Site Access) – The intersection will continue to operate acceptably after the addition of site traffic in all horizons. All-turns site access will operate acceptably without dedicated turn lanes. No traffic signal is warranted. Alexis Park Drive & 36 Avenue – The intersection will continue to operate acceptably after the addition of site traffic in all horizons. Alexis Park Drive & 32 Avenue – The intersection currently experiences delays associated with the eastbound stop-controlled movement, which will increase in the future due to background and site traffic growth. Signal warrant analysis confirms no traffic signal is warranted.				
	Access	Bunt & Associates recommends all-turns movements at the site access, which will effectively operate as a fourth leg of an existing public intersection. Analysis confirms the intersection will operate acceptably. To accommodate all-turns movements, a variance from the Subdivision and Development Servicing bylaw will be needed. Bunt & Associates recommends that site				
Active	Sidewalks	No sidewalk missing links impacting site connectivity are identified.				
Active	Crossings	No new crosswalks are needed to accommodate site users.				
	Cycling	Bike lanes are provided on Alexis Park Drive.				
	Transit	Bike lanes are provided on Alexis Park Drive (Route 3) and 30 Ave (Route 8).				

1

2. INTRODUCTION

2.1 Scope of Work

As discussed with the City of Vernon, the scope of work for this study was:

Development

- Trip Generation Calculate development trips during the weekday AM & PM peak hours based on industry standards.
- Trip Assignment Assign development trips to the network based on expected draw.

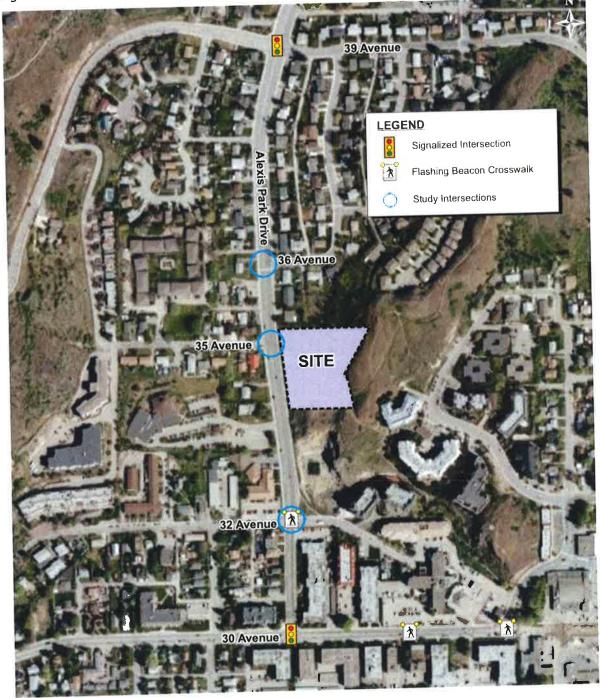
Vehicles

- Horizons Identify traffic volumes for the following:
 - o Existing
 - o Background For 2025 (Opening Day) and 2035 (10-Year) with a 1% growth rate applied.
 - o After Development Phase 1 and Full Build Out
- Intersection Capacity Complete weekday peak hour analysis at:
 - o Alexis Park Drive & 36 Avenue
 - o Alexis Park Drive & 35 Avenue
 - o Alexis Park Drive & 32 Avenue
- Signal Warrant Analysis Alexis Park Drive & 35 Avenue.
- Access Review Review access operations. Identifying access lane and control requirements.

Active Transportation

- Pedestrians Review sidewalk connectivity and adequacy of crossing controls near the site.
- Cyclists Identify connectivity to cycling facilities.
- Transit Identify service levels and connectivity to transit stops.

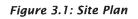
Parking


To be covered in a study submitted under separate cover.

2.2 Site Context

The site is bounded by Alexis Park Drive to the west and is zoned RH-3 (High-Rise Apartment Residential). The site context is illustrated in **Figure 2.1**.

 $\tilde{\lambda}_{i}$


Figure 2.1: Site Context

The Hills Vernon | Transportation Impact Assessment | Final Project No. 02-22-0014 | March 2022

3. DEVELOPMENT

The site plan is illustrated in Figure 3.1.

3.1 Densities

Proposed development uses and densities are summarized in **Table 3.1**. Anticipated densities are provided for future buildings.

ubic striftoposed b	Chistices	
BUILDING	LAND USE	DENSITY
1	Multi-Family Residential	91 units
	Commercial – Retail	463 m ² (4,975 ft ²)
2 (Future)	Multi-Family Residential	89 units
3 (Future)	Multi-Family Residential	89 units
	Commercial - Retail	463 m ² (4,975 ft ²)

Table 3.1: Proposed Densities

The Hills Vernon | Transportation Impact Assessment | Final Project No. 02-22-0014 | March 2022

Trip Generation 3.2

The trip generation rates used in this analysis are summarized in **Table 3.2**. The trip generation rates are based on the Institute of Transportation Engineers Trip Generation Manual (10th Edition). Development generated trips are summarized in Table 3.3 (vehicles).

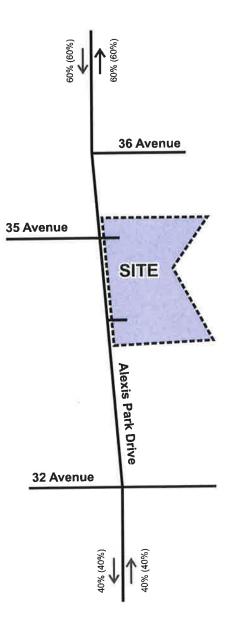
Table 3.2: Trip Generation Rates

		TRIP GENERATION RAT	ES	
ITE			PM Peak Hour	
Use #	Туре		0.34 per unit (61% In, 39% Out)	
1997 - C	General Suburban	$(26\% \ln 74\% Out)$		
			3.81 per 1,000 ft ²	
820	General Suburban	0.54 per Horer	(48% In, 52% Out)	
	Use # 221	Use # Type 221 General Suburban	Use #TypeAM Peak Hour221General Suburban0.36 per unit (26% In, 74% Out)0.94 per 1,000 ft	

Table 3.3: Vehicle Trip Generation

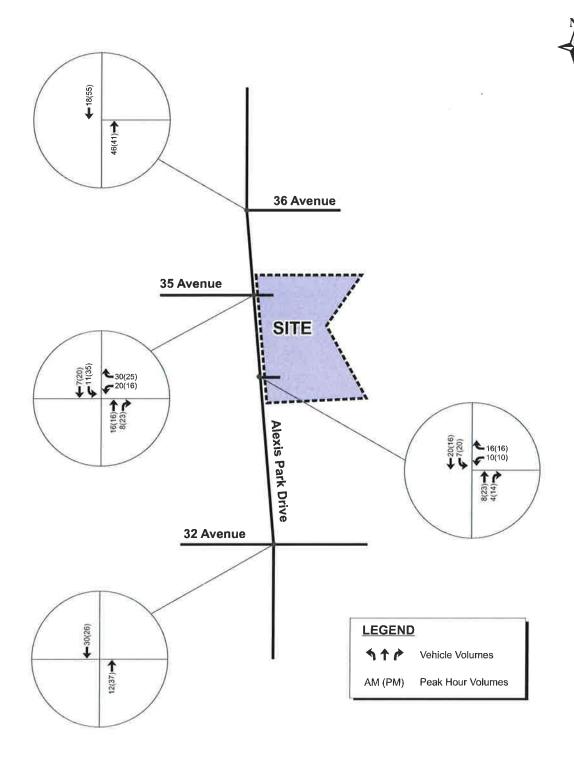
uble 5.5. Ve			AM PEAK HC			РМ РЕАК НО	UR	
BUILDING	USE	DENSITY		In	Out	Total	In	Out
			Total		24	40	24	16
1	Multi-Family	91 units	33	9	2	19	9	10
2 3	Commercial	4,975 ft ²	5	3		59	33	26
	Subtotal		38	12	26	39	24	15
	Multi-Family	89 units	32	8	24	39	24	15
	Multi-Family	89 units	32	8	24		9	10
	Commercial	4,975 ft ²	5	3	2	19	33	25
		1 112	38	12	26	58		
	Subtotal	TOTAL	107	31	76	156	90	66

Trip Distribution 3.3


Vehicle trips are distributed based on existing traffic patterns. The trip distribution used in this study is illustrated in Exhibit 3.1.

3.4 Access

Vehicle access to building 1 will be provided from a site access aligned with the intersection of Alexis Park Drive & 35 Avenue (new east leg).


With future phases, there will be a need to provide a second access on Alexis Park Drive to meet fire safety guidelines. In full build out scenarios, traffic associated with building 2 is assigned to the 35 Avenue access and traffic associated with building 3 is assigned to a future driveway access on Alexis Park Drive.

The resulting development generated traffic volumes are illustrated in Exhibit 3.2. Analysis is completed assuming all-turns movements and with future phases.

Exhibit 3.1 Site Traffic Distribution

Exhibit 3.2 Site Traffic Volumes

VEHICLES 4.

Road Network 4.1

The characteristics of roadways near the site are summarized in Table 4.1.

Table 4.1: Existing Roadway Characteristics

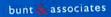
		COOCC CI	CTION	POSTED	FACILITIES		
ROADWAY	CLASSIFICATION	and the second s		SPEED	Parking	Bike Lanes	Bus Stops
ROADIN		# Lanes	Median			Yes	Yes
	Autorial	4	No	50 km/h	No	Tes	
Alexis Park Drive	Arterial	2		2	Yes	No	No
35 Avenue	Residential	2	No		N		

The existing 4-lane (2 south + 2 north) cross-section of Alexis Park Drive is illustrated in Figure 4.1. The Integrated Transportation Framework identifies a potential future three-lane cross-section on Alexis Park Drive (1 south + 1 turn-lane + 1 north); analysis in this report is completed with the existing cross-section.

Figure 4.1: Alexis Park Drive

Intersections 4.2

Existing intersection configurations and controls at study intersections are illustrated in Exhibit 4.1.


Volumes 4.3

Existing

The traffic counts used in this study are summarized in **Table 4.2**. Traffic data is included in **Appendix A**.

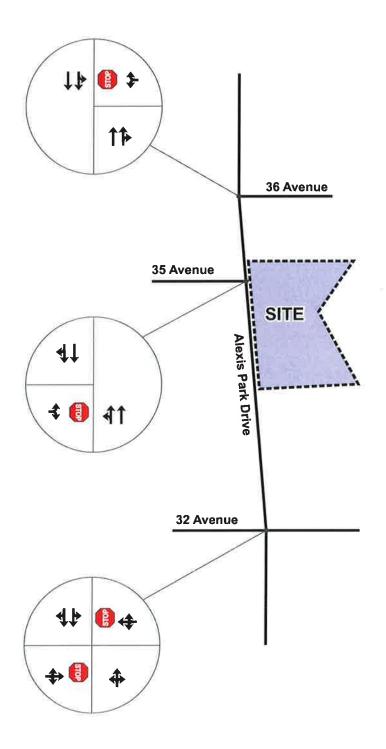
Table	1 2.	Traffic	Data	Summary
Innie	4	TTAILIC	00100	

Tuble 4.2. Truffie Botta Br	COUNT DATE	DAY OF WEEK	SOURCE
INTERSECTION	COONT BATT		Bunt & Associates
INTERSECTION	2022-03-01	Tuesday	Built & Associates
Alexis Park Drive & 35 Avenue		7	
Alexis Park Drive & 36 Avenue			
Alexis Park Drive & 32 Avenue			

To account for potential COVID impacts on vehicle volumes, a review of BC Ministry of Transportation & Infrastructure (BC MoTI) Highway 97 permanent data was completed as summarized in Table 4.3. The data confirms that traffic volumes at the end of 2021 (4-month period September - December) had recovered to match pre-COVID conditions. Therefore, no Covid adjustment is required. The resulting Existing traffic volumes are summarized in Exhibit 4.2.

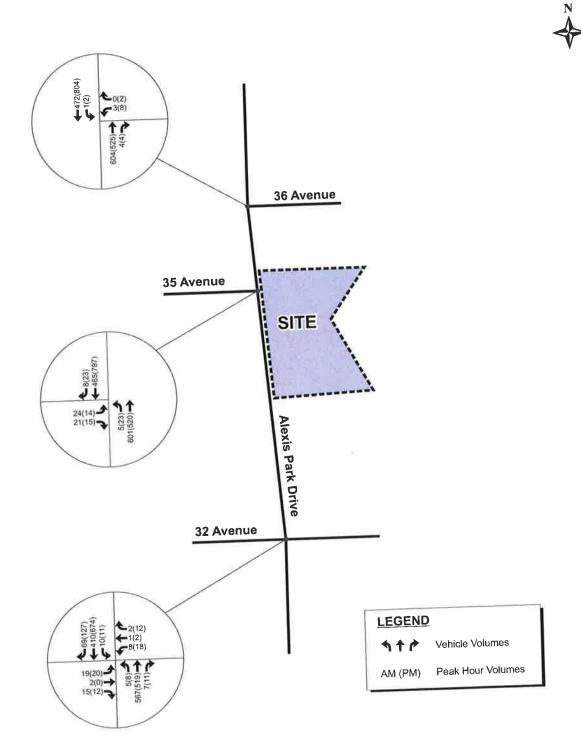
YEAR MAN	MAWDT (SEPT-DEC)	Lake Country	
	William R. Bennet Bridge		
	60,333	21,646	
2019		21,562	
2021	60,421	-84	
DIFFERENCE	+88	-84	

Table 4.3: Pre-Covid Data Comparison (Highway 97)

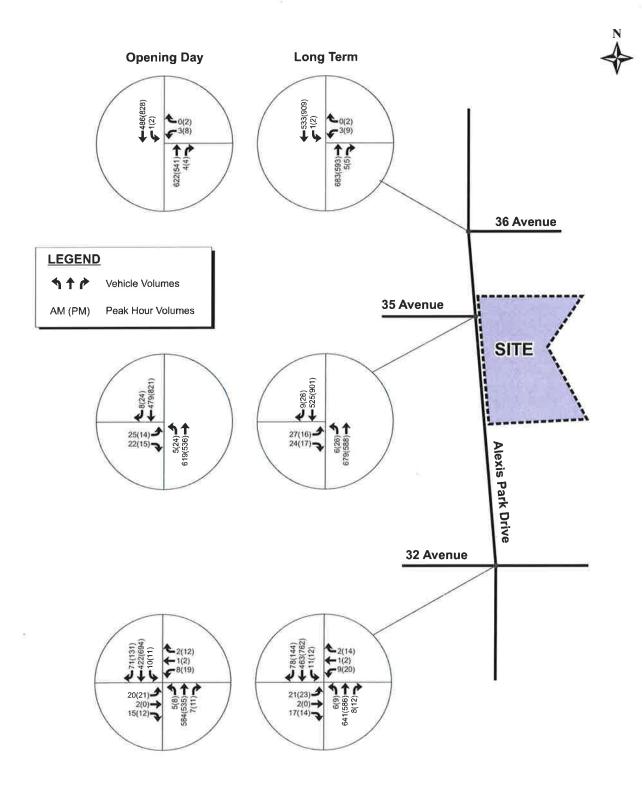

*AAWDT = Average Annual Weekday Daily Traffic

Background 4.3.2

A growth factor of 1% was applied to estimate Opening Day (2025) and 10-Year (2035) horizon volumes. This growth factor accounts for general area development. Resulting Background traffic volumes are illustrated in Exhibit 4.3.


After Development 4.3.3

Development generated traffic volumes (Exhibit 3.2) were added to Existing traffic volumes (Exhibit 4.3) to forecast the After Development traffic volumes illustrated in Exhibit 4.4.


Exhibit 4.1 Existing Intersection Configurations

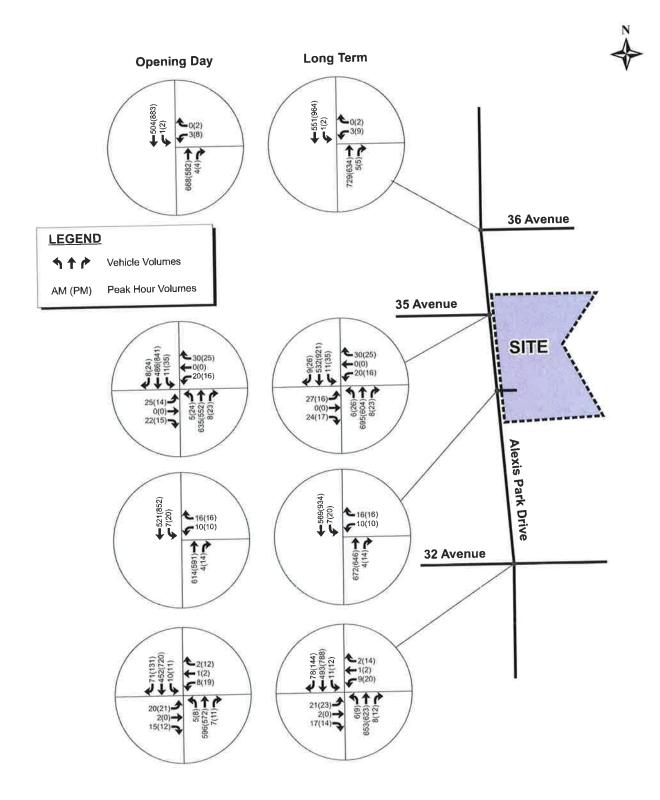


Exhibit 4.2 Existing Traffic Volumes

Exhibit 4.3 Background Traffic Volumes

Exhibit 4.4 After Development Traffic Volumes

4.4 Intersection Analysis

Synchro 9.2 traffic analysis software was used to review intersection operational conditions based on the methods outlined in the Highway Capacity Manual. Traffic operations were assessed using the performance measures of volume-to-capacity (v/c) and Level of Service (LOS).

The volume-to-capacity (v/c) ratio of an intersection movement represents the ratio between the demand volume and available capacity. A v/c ratio over 1.0 indicates a congested intersection where drivers may have to wait through more than one signal cycle. The Level of Service (LOS) rating is based on average vehicle delays ranging from LOS A (minimal delay) to LOS F (significant delay).

The analysis is completed with a saturation flow rate of 1900 vehicles per hour. Synchro output reports are provided in **Appendix B**. The volume to capacity (v/c) ratio, level of service, average control delay (in seconds), and 95th percentile queue (in metres) are summarized for the following scenarios:

- Alexis Park Drive & 35 Avenue in Table 4.4
- Alexis Park Drive & 36 Avenue in Table 4.5
- Alexis Park Drive & 32 Avenue in Table 4.6

	LUCE TON	MOVEMENT		AM PEA	K HOU	R		PM PEAK HOUR				
INTERSECTION	HORIZON	& LANES		V/C	LOS	Delay	Queue	v/c	LOS	Delay	Queue	
		EB 1		0.11	В	15	<5	0.12	C	21	<5	
Alexis Park Drive & 35 Avenue	Existing		2	0.25	Α	1	<5	0.21	A	1	<5	
		NB	2	0.19	A	0	<5	0.33	A	0	<5	
(East-West Stop)		SB	4	0.15	A	0.6			Α	0.6	-	
		Overall	11	0.12	C	16	<5	0.12	С	22	<5	
	Background	EB	+	0.26	A	1	<5	0.22	A	1	<5	
	(2025)	NB	2	0.20	A	0	<5	0.34	Α	0	</td	
		SB	2		A	0.7	1.1		A	0.6		
		Overall	1.	0.15	c	17	<5	0.16	С	25	<	
	Background (2035)	EB	1	0.15	A	1	<5	0.24	Α	1	<	
		NB	2	0.28	A	0	<5	0.37	Α	0	<	
		SB	2	0.22	A	0.7			А	0.8		
		Overall	-		C	20	5	0.19	D	32		
	After Development (2025) - Full Build	EB	1	0.16	C	19	5	0.17	C	23		
		WB	1	0.17		19	<5	0.18	A	1	<	
		NB	2	0.20	A		<5	0.28	A	1	<	
		SB	2	0.16	A	10		0.20	A	1.7		
		Overall			A		-	0.26	E	-		
	After	EB	1	0.20	C	-	6	0.20	D			
	Development	WB	1	0.19	C	-	<5		A			
	(2035)	NB	2	0.22	A			(1944)	A		<	
	- Full Build	SB	2	0.17	A			-	A	-	-	
		Overall			A	1.7		8 <u> </u>	A	2.0		

Table 4.4: Intersection Analysis (Alexis Park Drive & 35 Avenue)

able 4.5. mers		MOUTH	NIT	AM PEA	K HOU	R		PM PEA	K HOU		
NTERSECTION	HORIZON	MOVEME		V/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
		& LANES			C	16	<5	0.04	С	19	<5
Alexis Park Drive & 36 Avenue	Existing	WB	1	<0.02	A	0	<5	0.22	Α	0	<5
		NB	2	0.25		0	<5	0.33	Α	0	<
West Stop)		SB	2	0.19	A	0.1		-	A	0.1	
		Overall		1	A	16	<5	0.04	С	20	<
	Background	WB	1	<0.02	С		<5	0.22	A	0	<
	(2025)	NB	2	0.26	Α	0		0.34	A	0	<
		SB	2	0.20	A	0	<5	0.54	A	0.1	
		Overall			A	0.1		0.05	c	22	<
	Background (2035)	WB	1	0.02	С	18	<5		A	0	-
		NB	2	0.28	A	0	<5	0.24	A	0	
		SB	2	0.22	A	0	<5	0.38	A	0.2	
		Overall	-		A	0.1				22	_
	A (1)	WB	11	0.02	C	17		0.04	C	-	-
	After Development	NB	2	0.28	A	0		0.24	A		-
	(2025)	SB	2	0.21	A	0	<5	0.36	A	-	
	- Phase 1	Overall			A	0.1			A	_	
		WB	11	0.02	C	19	<5	10000	C		
	After		2	0.30	A	0	<5		A		
	Development	NB	2	0.23	A	0	<5	0.40	A		
	(2025)	SB		0.2.5	1		1	1 1	A	0.2	
		Overal									

Table 4.5: Intersection Analysis (Alexis Park Drive & 36 Avenue)

Table 4.6: Intersection Analysis (Alexis Park Drive & 32 Avenue)

		MOVEMENT AM PEAK HOUR				2	PM PEA				
NTERSECTION	HORIZON	& LANES		v/c	LOS	Delay	Queue	v/c	LOS	Delay	Queue
			11	0.16	С	24	<5	0.27	E	42	
Alexis Park Drive & 32 Avenue (East-West Stop)	Existing	EB	1	0.05	C	22	<5	0.15	С	23	<5
		WB	1	<0.03	A	1	<5	0.01	А	1	<5
		NB		0.17	A	1	<5	0.29	A	1	<5
		SB	2		A	1.2		<u>.</u>	A	1.7	
		Overall	1.	- 19	D	26	6	0.30	E	46	10
	Background	EB	1	0.18	C	22	<5	0.16	С	25	5
	(2025)	WB	1	0.05	A	1	<5	< 0.02	A	1	</td
		NB	1	<0.02	A	1	<5	0.30	Α	1	</td
		SB	2	0.17		1.2			A	1.9	
		Overall		-	A	30	7	0.41	F	65	1
	Background (2035)	EB	1	0.22	D	26	<5	0.20	D	29	
		WB	1	0.07	D	20	<5	<0.02	А	1	<
		NB	1	<0.02	A	1	<5	0.33	A	1	<
		SB	2	0.19	A		-	0.55	A	2.4	
		Overall			A	1.4		0.33	F	53	1
	After	EB	1	0.19	D	27		0.33	D		
	Development (2025) - Phase 1	WB	1	0.06	С	23		<0.02	A		-
		NB	1	<0.02	A	1			A	-	
		SB	2	0.18	A	1		-	A		
		Overal			A	1.2		-	F	and the second	
	After Development	EB	1	0.24	D				D		-
		WB	1	0.07	D	_			A	-	
	(2035)	NB	1	<0.02	A	_			-	-	_
	x== /	SB	2	0.20	A				4	_	_
		Overal	1		A	1.4	4			2.1	

Intersection capacity analysis indicates:

- Alexis Park Drive & 35 Avenue The intersection will continue to operate acceptably after the addition of site traffic in all horizons. All-turns site movements at the site access will operate acceptably without dedicated turn lanes.
- Alexis Park Drive & 36 Avenue The intersection will continue to operate acceptably after the addition of site traffic in all horizons.
- Alexis Park Drive & 32 Avenue The intersection currently experiences delays associated with the eastbound stop-controlled movement. This will increase in the future due to background and site traffic growth. Signal warrant analysis was completed to confirm if any control changes are warranted.

4.5 Signal Warrant Analysis

Signal warrant analysis was completed based on the methods outlined in the Transportation Association of Canada (TAC) *Traffic Signal and Pedestrian Signal Head Warrant Handbook* (2014). A score of 100 points or more indicates a traffic signal is warranted. The signal warrant analysis is summarized in **Table 4.7** and included in **Appendix B**.

INTERSECTION	HORIZON	SIGNAL WARRANT SCORE	COMMENT		
Alexis Park Drive	Existing	20/100	Not Warranted		
& 35 Avenue	After Development (Phase 1)	28/100			
	After Development (Full Build)	37/100			
Alexis Park Drive	Existing	26/100	Not Warranted		
& 32 Avenue	After Development (Full Build)	32/100			

Table 4.7: Signal Warrant Analysis

Signal warrant analysis confirms that traffic signals are not required to accommodate the development.

4.6 Access Review

The site access for Building 1 aligns with 35 Avenue. A review is completed to confirm appropriate access lane configurations and control.

Capacity Analysis

Intersection capacity analysis confirms the site access will operate acceptably with a single outbound lane and no separate turn lanes on Alexis Park Dr. A traffic signal is not required to accommodate site traffic.

Spacing

As the access is aligning with 35 Avenue, the proposed access meets spacing guidelines.

Bylaw

Subdivision and Development servicing bylaw #3843 (Schedule B) identifies the following:

Access to Arterial roads as the only, or a primary means of access or egress to development is subject to no other lower classification road access being available to that lot. Access to an Arterial road where Annual Average Daily Traffic (AADT) volumes exceed 5000 must be limited to right in and out movements only or provide a designated turn lane, where supported. Existing agricultural and low density residential lands applying for minor additions to existing buildings are exempted from providing these works.

Alexis Park Drive is classified as an Arterial Street with daily volumes exceeding 5,000 vehicles per day. Due to right-of-way constraints, a dedicated southbound left turn lane and/or a median on Alexis Park Drive cannot be provided. Therefore, the following options exist for the site access:

- All-Turns with No Turn Lanes This option requires a bylaw variance as a dedicated left turn lane cannot be provided due to right-of-way constraints north of the subject site.
- *Right Turn Only Channelization/Signage* A median cannot be provided on Alexis Park Drive due to right-of-way constraints and negative impacts to existing residents along 35 Avenue. To accommodate right-turn restrictions would require an island (channelization) at the access only with signage further restricting left turns.

Based on the analysis completed in this report, Bunt & Associates recommends all-turns movements at the site access, which will effectively operate as a fourth leg of an existing public intersection. Analysis confirms the intersection will operate acceptably with this fourth leg. To accommodate all-turns movements will require a variance from the Subdivision and Development Servicing bylaw. Bunt & Associates recommends that site access operations be re-assessed and confirmed with future phases.

For completeness, concept drawings are provided in **Appendix C** showing the necessary changes needed to accommodate (1) A right-in/right-out access or (2) A right-in/all-turns out access.

ACTIVE TRANSPORTATION 5.

5.1 Walking

Trip attractors and pedestrian infrastructure within the study area are illustrated in Figure 5.1.

Figure 5.1: Pedestrian Network

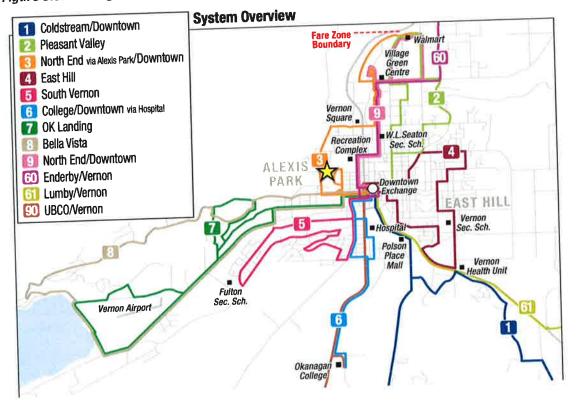
A review of pedestrian infrastructure finds:

- Sidewalks No missing links impacting site connectivity are identified.
- Crosswalks No additional crossings are needed. Crossings of Alexis Park Drive are provided to the north (36 Avenue - signed crosswalk) and south (32 Avenue - Rapid Flashing Beacon crosswalk).

5.2 Cycling

Cycling facilities near the site are illustrated in Figure 5.2. Bike lanes are provided on Alexis Park Drive.

Figure 5.2: Existing Cycling Network


5.3 Transit

Transit services are provided on Alexis Park Drive. Bus sops near the site are summarized in **Table 5.1**. The existing (2022) area transit network is illustrated in **Figure 5.3** and summarized **Table 5.2**. Sidewalk and crosswalk connectivity is provided to all stops.

Table 5.1: Existing Transit Stops

			ROUTES	WALKING
STOP LOCATION	C. Street	Direction	SERVICED	DISTANCE
Roadway	Cross-Street		2	175m
Alexis Park Drive	32 Avenue	North	5	260m
Alexis Fark Drive		South		25m
	35 Avenue	North		
	37 St/Alexis Park Dr	West	8	400m
30 Avenue	ST SL/AIEAIS TUIK D			

Figure 5.3: Existing Transit Service

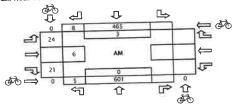
Table 5.2: Existing Transit Frequency

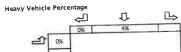
_		WEEKDAY S	FRVICE	HEADWAY	(MINUTES)	
ROU	ТЕ		End	Day	Evening	Saturday	Sunday
щ	Name	Start			40	40	40
#		6:00	21:30	40			140
3	North End	6:20	20:40	70	70-80	70-80	140
8	Bella Vista	6.20	20.40				

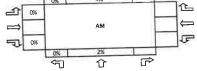
The Hills Vernon | Transportation Impact Assessment | Final Project No. 02-22-0014 | March 2022

APPENDIX A

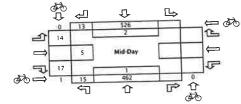
Traffic Data

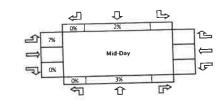

Intersection	n Turning Mover	nent Count Summary:	Alexi	s Park Driv	e &	35 Avenue		
N/S Road:	Alexis Park Drive	-	AM Peak Hr:	7:45 AM	to	8:45 AM	PHF (AM Peak Hr):	0.86
E/W Road:	35 Avenue		Mid-day Peak Hr:	12:00 PM	to	1:00 PM	PHF (Mid-day Peak Hr):	0.89
Count Date:	March 1, 2022	Tuesday	PM Peak Hr:	4:00 PM	to	5:00 PM	PHF (PM Peak Hr):	0.92
Weather:	Clear							
Road Cond:	Dry							
Project #:	02-22-0014							

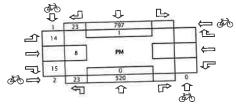


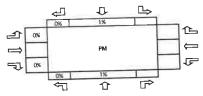

Alexi	is Park Drive		35 Avenue		1		
Nort	hbound (South Leg)	Southbound (North Leg)	Eastbound (West Log)	Westbound (East Leg)		Pedest	rtans Cyclists
Time Starting Left		Left Through Right	Left Through Right	Left Through	Right Tota	Il Vehicles West	
0	ar Tiuck Car Tiuck Car			r Truck Car Truck Car Tru	Car Truck 5	Min Hourly Side	Side Side Side NB SB WB
	1 0 31 1	22 1 0		2 0 5		59 59 0	0 0 0 0
	1 0 39 0	21 0 3		0 0		67 126 1	
	2 0 83 0	46 1 2		3 0		140 266 1	
	1 0 70 1	62 0 1		3 0		139 405 0	
	1 0 72 0 0 0 85 1	48 3 1		2 0 0		128 474 1	
	0 0 85 1 2 0 126 4	63 3 1		3 0		162 569 1	
	0 0 140 1	66 3 3 100 2 1		3 0		215 644 0	
	0 0 147 3	124 6 3		5 0		255 760 5	
	3 0 176 5	126 5 3		7 0		297 929 0 328 1095 1	
	2 0 127 2	98 4 1		5 0		328 1095 1 244 1124 0	
	4 0 131 6	93 3 3		2 0			
	1 0 112 3	82 4 4		4 0		244 1113 0 214 1030 1	
	5 0 108 1	79 2 1		5 0		209 911 3	
	2 0 122 4	75 4 3		3 0		215 882 2	
	2 0 109 5	98 4 3		7 0		233 871 1	
	2 0 101 2	89 1 2		5 0		203 860 0	
	3 0 104 5	110 2 2		5 0		236 887 3	
	0 0 99 2	130 4 5		\$ 0		250 922 0	
10:45	3 0 121 5	111 2 8		5 0		260 949 6	
11:00	2 0 97 1	97 1 3	0 0 0	4 0		205 951 0	
	3 0 96 3	126 4 7	0 2 0	0 0		241 956 2	
11:30	3 0 100 4	125 5 6	0 1 0	3 0		247 953 0	
	4 0 99 5	145 3 2	0 3 0	3 0		264 957 0	
	6 0 112 2	113 2 3		4 0		245 997 0	0 0 0 0
	5 0 96 4	123 2 5		6 0		247 1003 1	0 0 0 0
	2 0 113 4	130 7 1		1 0		261 772 1	1 1 0 0
	2 0 125 6	147 2 4		6 0		294 1047 3	
	4 0 127 1	115 5 1		2 0		257 1059 6	
13:15	8 0 97 2 5 0 120 8	151 6 8		1 0		288 1100 1	
		129 3 7		5 0		280 1119 2	
14:00		154 1 7		4 0		291 1116 0	
	9 0 132 6 5 0 129 1	153 3 7		8 0		322 1181 1	
14:30	6 0 120 4	182 6 2		7 0		340 1233 2	
	3 0 127 6	175 1 4				306 1259 2	
	5 0 136 3	160 6 6		5 0 5 0		323 1291 8	
	4 0 131 3	178 3 5	0 4 0	3 0		323 1292 3 331 1283 6	
15:30	9 0 116 5	177 3 7		7 01		331 1283 6 326 1303 3	
	7 0 124 1	189 1 5		5 0		335 1315 2	
16:00	5 0 156 0	205 2 4		3 0		380 1372 2	
	9 0 125 1	218 2 9		6 0		376 1417 2	
	4 0 128 1	192 4 5		5 0		339 1430 1	
	5 0 107 1	174 0 5		1 0			1 0 0 0
	6 0 116 0	199 0 6		4 0		336 1348 3	
	8 0 100 0	154 1 13	0 4 0	3 0		283 1255 1	
	4 0 90 2	164 0 10	0 2 0	5 0		277 1193 3	
	7 0 79 0	142 0 6		1 0		243 1139 0	
18:00	3 0 97 0	102 1 4		5 0		213 1016 2	0 0 0 0
	6 0 67 1	88 0 8		5 0		177 910 2	0 1 0 0
18:30	4 0 73 0	77 1 0		4 0		160 793 0	
18:45	1 0 57 1	92 0 7		2 0		163 713 0	
hr Total Phr Total Veh	99 0 5603 133	6375 135 227	0 175 6 21			88	20 5 0 3
11 1 MONE # CH	1001 5756	6510 2	127 181	215		13068	

No Time Starting Lef 7:00 7:30 7:31 7:30 7:32 8:00 8:15 8:30 8:45 8:30 6:45 8:30 11:00 11:15 11:30 11:45 11:30 11:45 12:00 12:15 12:30 12:35 12:30 12:45	Car Truck 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	South Leg) Through Carl Truck 72 0 85 1 126 4 140 1 147 3 176 5 127 2 131 6 1004 22	Right Car Truck	Southbound Left Carl Tro	Through		ight Car T 1 3 1 3 1 3 1 3	Left	bound (E	Through		ghi Còi Tru	Eastboo Left k Car 1 6 7 5	0 0	Car 1		Car To 2 3	0 1	al Vehicle Mail Hour 128 162 215	y side	East Side	North Side 0 1		0	SB
No Time Starting Lef 7:00 7:30 7:31 7:30 7:32 8:00 8:15 8:30 8:45 8:30 6:45 8:30 11:00 11:15 11:30 11:45 11:30 11:45 12:00 12:15 12:30 12:35 12:30 12:45	arthbound 1 Sh Car Truck 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	South Leg) Through Carl Truck 72 0 85 1 126 4 140 1 147 3 176 5 131 6 1004 22 131 6 1004 22 1025 590	Right Car Truck	Left	Through ock Car 48 63 66 100 124 126 98 93	Ri 3 3 3 2 6 5 4 3	Car 1 1 3 1 3 1 3 3	Left Truck C 0 0 0 0 0 0 0		Through			Left Car 1 6 7	0 0	Car 1		Carl Tr	0 1	128 162	Y Side	Side	5/dr 0 1 0	Side 0 0	0	0
Time Starting Lef 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 four Total 11:00 11:15 11:30 11:45 12:30 12:15 12:30	en Carl Truck 1 0 0 0 2 0 0 0 0 0 0 0 2 0 3 0 2 0 4 0 12 0 10 0	Threadh Carl Truck 72 0 85 1 126 4 140 1 147 3 176 5 127 2 131 6 1004 22 1025 1225 590 11	Car Truck		000 Car 48 63 66 100 124 126 98 93	Trukk 3 3 3 2 6 5 4 3	Car 1 1 3 1 3 1 3 3	ruck _C 0 0 0 0 0 0					ck Car 1 6 7	0		Truck	2	0 1	128			0	0	0	0
7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 iour Total 11:00 11:15 11:30 11:45 12:00 12:15 12:30	1 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0 0 2 0 4 0 12 0 12 0 5 0 5	72 0 85 1 126 4 140 1 147 3 176 3 127 2 131 6 1004 22 1005 20 1005 20 100		Carl Tro	48 63 66 100 124 126 98 93	3 3 2 6 5 4 3	1 3 1 3 1 3 1 3	0 0 0 0 0					1 6 7	0				0 1	162	-		1	0	0	0
7:15 7:30 7:45 8:00 8:15 8:30 8:43 8:45 8:45 8:45 1000 Total 11:00 11:15 11:30 11:45 12:00 12:15 12:30	0 0 0 2 0 0 0 3 0 2 0 4 0 12 0 12 0 5 0 5 0 12	85 1 126 4 140 1 142 3 176 5 127 2 131 6 1004 22 2 1022 590 11			63 66 100 124 126 98 93	3 3 2 6 5 4 3	1 3 1 1 3	0					7	1			31							0	0
7:30 7:45 8:00 8:15 8:30 8:45 6our Total ak Hour Total 11:00 11:15 11:30 11:45 12:30 12:15 12:30	2 0 0 0 3 0 2 0 4 0 12 0 5 0	126 4 140 1 147 3 176 5 127 2 131 6 1004 220 1025 590 1			66 100 124 126 98 93	3 2 6 5 4	1 3 1 1 3	0															0		
7:45 8:00 8:15 8:30 8:45 four Total 11:00 11:15 11:30 11:45 12:00 12:15 12:30	0 0 0 0 2 0 4 0 12 0 5 5	140 1 147 3 176 5 127 2 131 6 1004 22 1026 590 11			100 124 126 98 93	2 6 5 4	1 3 1 1 3	0					5				6	0 .	255 76	0)	5				
8:00 8:15 8:30 8:45 four Total ak Hour Total 11:00 11:15 11:30 11:45 12:30 12:15 12:30	0 0 3 0 2 0 4 0 12 0 12 0 12 0 12 12	147 3 176 5 127 2 131 6 1004 22 1026 590 11			124 126 98 93	6 5 4 3	3	0	-							-	7		297 9		0	2	0	0	0
8:15 8:30 8:45 iour Total 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45	3 0 2 0 4 0 12 0 12 0 12 5 0	176 5 127 2 131 6 1004 222 1026 590 11			126 98 93	5 4 3	1						7			-	2		328 10	95	1	0	0	0	0
8:30 8:45 our Total ak Hour Total 11:00 11:15 11:30 11:45 12:30 12:45	2 0 4 0 12 0 12 12 5 0	127 2 131 6 1004 22 1026 590 11			98 93	4	3	G		-			7	-		-	5		244 11		0	1	0	0	0
8.45 our Total 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45	4 0 12 0 12 5 0	131 6 1004 22 1026 590 11			93				-	-	-		2				2		244 11		0	0	0	0	0
11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45	12 0 12 5 0	1004 22 1026 590 11				29		0		-	-		40	-		-	31	0			8	4	0	0	0
k Hour Total 11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45	5 0	2 1020 590 11					16	0	6 L.		-			41				31 1	873			T		0	0
11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45	s c	590 11				747	-	16	100				24				21	0			6	3	0	0	M
11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45					448	17	8	0		-	-			24				21	11	24					
11:15 11:30 11:45 12:00 12:15 12:30 12:45		1				465	_	8	_			_	_			11		-				0	0	0	0
11:15 11:30 11:45 12:00 12:15 12:30 12:45	1				(contraction)			-					1 0	0 0			4		205	-	0	3	0	0	0
11:15 11:30 11:45 12:00 12:15 12:30 12:45		97			97	1		0	_	-	-	-	1 1	2 0			0		241	-	2	0	0	0	0
11:30 11:45 12:00 12:15 12:30 12:45			3		126	4		0		-	-	_	1	1 0			3	0			0	1	0	0	0
11:45 12:00 12:15 12:30 12:45			4		125	5		0		-				3 0		- 1	3			57	0	0	0	0	0
12:00 12:15 12:30 12:45			\$		145	3		0	-		-	_		2 1			4				1	0	0	0	0
12:15 12:30 12:45			2		113	2		0	-					6 (_	б	0	247 10	03	1	1	1	0	0
12:30 12:45			4		123	2		0		-							1		261 10		3	1	0	0	0
12:45			4		130	7		0	-	-					0	_	6		294 11	141	7	6	1	0	0
		0 125	6		147				-	1			1		1		27	0	2004	-					
Hour Total	27		9		1006	1032	211	31	-					- 25			1.77		2004		5	2	1	0	0
THE CALL		7 86		-	513		13		_			1.1	1		1		17	0		047					
ak Hour Total			6	_	513	526		13						1	4			1/1							
and the second	1	15 46	2	_	_	OAC		1,24	-		_			-	-	1	31	0	380	-	2	0		0	0
					205	2	4	0							0	-	5	0	376	-	2	0		0	1
16:00			0	-	218										0		5	0		_	1	0		0	0
16:15			1		192				-	1.0	_			_	0	-	1	0	297 1	392	3	1	0	0	0
16:30			1	-	174					-					0	-	4	0	336 1		3	1		0	0
16:45			0	_	199		- 6			_					0	-	3	0	283 1		1	2		0	0
17:00		0 116	0		154				18	-	-		-		0	-	5	0	277 1		3	1		0	0
17:15		0 100	2		164						-	-	-		0	1	1	0	243	139	0	1		0	1
17:30		0 79	0		142		6		-	-	-	-	-		0		28	0		1.0	15	1	0		
17:45	48		5		1448				-	-	_				33				2531				0	Ö	11
Hour Total			07			1457		58	-	-	-	-	-		0	1	15	0			8	_	0	V	
eak Hour Total	23		3		785						-				14	10		15		392					
eas Hour Total			20			797	71	23	-	_	_		0	Const.						-	abl	1	1	0	1
	-			-		-	1 107	-			1			92	2		86	.0			30			0	
Hour Total	87	0 2744	56		317	2 64		105	-		1.0	1			94			86	-	6408					

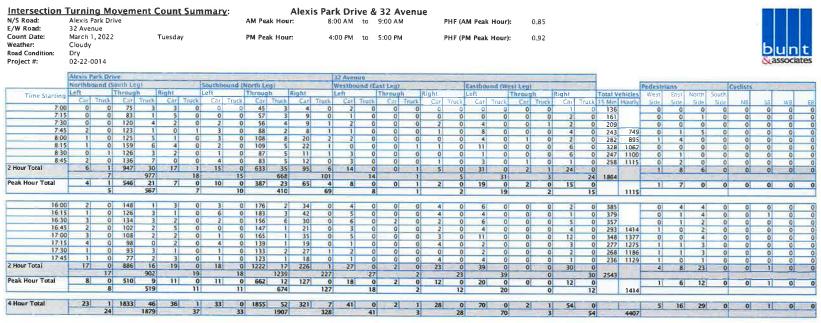

Peak Hour Volumes

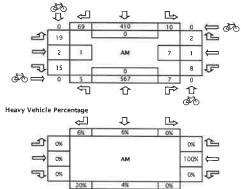




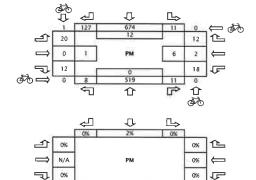


1°





	Time Starting 7,00 7,23 7,43 7,43 7,43 7,43 8,15 8,15 8,15 8,15 8,15 8,15 8,15 8,15	Intersection N/S Road: E/W Road: Count Date: Weather Road Condition: Project #:
Peak Hour Volumes	Netwis Fack Divide Worth Sent Fack Divide Sent Truck Di Sent Truck Di Sent Truck Divide Sent Truck Divide Sent Truck Di	Intersection Turning Movement Count Summary: Ny Road: 36 Avenue Count Date: March 1, 2022 Tuesday Weather: Cloudy Road Condition: Dry Project #: 02-22-0014
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	t <mark>Count Summary:</mark> Tuesday
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Alexis AM Peak Hour: PM Peak Hour:
	Truck Carl (Faith Lega) 0 0 1 0 0 1 0	Alexis Park Drive & 36 Avenue 7:45 AM to 8:45 AM 1: 4:00 PM to 5:00 PM
	Under O Carl Carl O Track Carl O Carl Carl Carl O Track Carl Carl O Carl Carl Carl O Track Carl Carl O Carl Carl Carl O Track Carl Carl O Carl Carl Carl O Track Carl O Carl Carl O Track Carl O Carl Carl O Track Carl O Carl Carl O Track Carl O Carl O Track O Carl O Ca	nue PHF (AM Peak Hour): PHF (PM Peak Hour):
	0 0	r): 0,84 r): 0,92
	Total Vehicles Well Sint 7 15 Mith Haunford Side Side 0 15 Mith Haunford Side <	for a second
~ &		



Peak Hour Volumes

Û

5

2%

企

0%

P

0%

5

bunt 🎍 associates

APPENDIX B

Synchro & Warrant Outputs

3/25/2022	۶	7	٩	1	ŧ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	Y			44	11-		
Traffic Volume (veh/h)	24	21	5	601	465	8	
Future Volume (Veh/h)	24	21	5	601	465	8	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	25	22	5	633	489	8	
	10	-		10	10		
Pedestrians	3.6			3.6	3.6		
Lane Width (m)	1.2			12	1.2		
Walking Speed (m/s) Percent Blockage	1			1	1		
Right turn flare (veh)				None	None		
Median type							
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked	840	268	507				
vC, conflicting volume	040	200					
vC1, stage 1 conf vol							
vC2, stage 2 conf vol	840	268	507				
vCu, unblocked vol	6.8	6.9	4.2				
tC, single (s)	0.0	0.9	7.4				
IC, 2 stage (s)	3.5	3.3	2.2				
tF (s)	3.5	5.5 97	100				
p0 queue free %	298	717	1025				
cM capacity (veh/h)	296	111					CONTRACTOR OF THE OWNER
Direction, Lane #	EB 1	_	NB 2	SB 1	S8 2		
Volume Total	47		422	326	171		
Volume Left	25			0	-		
Volume Right	22		-	0	4700		
cSH	410			1700	1700		
Volume to Capacity	0.11			0.19			
Queue Length 95th (m)	3.1			0.0			
Control Delay (s)	14.9			0.0	0.0	,	
Lane LOS	6		-				
Approach Delay (s)	14.9			0.0	_		
Approach LOS	E	3					
Intersection Summary				1		100	
Average Delay			0.6			1.10	A
Intersection Capacity Util	ization		33.0%		ICU Lev	el of Service	n
Analysis Period (min)			15	5			
. mailane , arres ()							

	1	۰.	1	1	5	1	
	WBL	WBR	NBT	NBR	SBL	SBT	
lovement	¥		1			47	
ane Configurations	3	2	604	4	2	472	
Traffic Volume (veh/h)	3	2	604	4	2	472	
uture Volume (Veh/h)	Stop	-	Free	-		Free	
Sign Control	0%		0%			0%	
Grade	0.95	0.95	0.95	0.95	0.95	0.95	
Peak Hour Factor	0.95	2	636	4	2	497	
Hourly flow rate (vph)		2	10		-	10	
Pedestrians	10		3.6			3.6	
Lane Width (m)	3.6		3.0 1.2			1.2	
Walking Speed (m/s)	1.2		1.2			1	
Percent Blockage	1		-				
Right turn flare (veh)			None			None	
Median type			None			Nono	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked					650		
vC, conflicting volume	910	340			030		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol		_			650		
vCu, unblocked vol	910	340					
tC, single (s)	6.8	6.9			4.2		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	100			100		
cM capacity (veh/h)	269	645			904		
	W8.1	NB 1	NB 2	SB 1	S8.2	A DOMESTIC OF THE	
Direction, Lane #	5		216	168	331		
Volume Total	3		0	2	0		
Volume Left	2		4	0	0		
Volume Right	351		1700	904	1700		
cSH	0.01		0.13		0.19		
Volume to Capacity	0.01				0.0		
Queue Length 95th (m)	15.4				0.0		
Control Delay (s)	15.4 C		0.0	A	0.0		
Lane LOS				0.0			
Approach Delay (5) Approach LOS	15.4 C			0.0			
Intersection Summary			0,1		-		
Average Delay			29.7%		CULEVE	el of Service	A
Intersection Capacity Utili Analysis Period (min)	zation		29.7%	•	ICO LOVE		

AU

ė

3/25/2022	1		~	<	+	4	٩.	1	1	5	ŧ.	4
		-	EBR	WBL	WBT	WBR	NBL	NBT	NER	SBL	SBT	SBR
Novement	EBL	EBT	EBR	WD6	4.	11011		4.			41+	
ane Configurations		4	15	8	2	2	5	567	7	10	410	69
Traffic Volume (veh/h)	19	2	15	8	2	2	5	567	7	10	410	69
Future Volume (Veh/h)	19	2	15	0	Stop			Free			Free	
Sign Control		Stop			0%			0%			0%	
Grade		0%	0.05	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Peak Hour Factor	0.95	0.95	0.95	0.95	2	2	5	597	7	11	432	73
Hourly flow rate (vph)	20	2	16	0	10	17.1	-	10			10	
Pedestrians		10			3.6			3.6			3.6	
Lane Width (m)		3.6			1.2			1.2			1.2	
Walking Speed (m/s)		1.2			12			1			1	
Percent Blockage		1										
Right turn flare (veh)								None			None	
Median type												
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked			9		1158	620	515			614		
vC, conflicting volume	1124	1124	272	886	(100	020	010					
vC1, stage 1 conf vol												
vC2, stage 2 conf vol			_		4450	620	515			614		
vCu, unblocked vol	1124	1124	272	886	1158	6.9	4.2			4.2		
tC, single (s)	7.5	6.5	6.9	7.5	65	0.9	4.2					
tC, 2 stage (s)						3.3	2.2			2.2		
(F (s)	3.5	4.0	3.3	3.5	4.0	100	100			99		
p0 queue free %	87	99	98	96	99	423	1018			933		
cM capacity (veh/h)	152	197	713	222	188	423	1010		_		_	
	EB 1	WB1	NB 1	SB 1	\$8.2	79.DF				-	-	-
Direction, Lane #	38	12	609	227	289							
Volume Total	20	8	5	11	0							
Volume Left	16	2			73							
Volume Right	231	234		933	1700							
cSH	0.16				0.17							
Volume to Capacity	4.6				0.0							
Queue Length 95th (m)	23.6				0.0							
Control Delay (s)	23.0 C			A								
Lane LOS	23.6			0.2	2							
Approach Delay (s)	20.0											
Approach LOS		_	_	_	-	-		1	-	1.1.1.1.		
Intersection Summary	1	-	13	2	-							
Average Delay			47.19			el of Serv	ice			A		
Intersection Capacity Util	ization		47-17		.00 200							
Analysis Period (min)				5								

3/25/2022		_					
	٠	7	1	1	ŧ	4	
Novement	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	¥			44	1÷		
ane Contigurations Traffic Volume (veh/h)	14	15	23	520	797	23	
	14	15	23	520	797	23	
Future Volume (Veh/h)	Stop	10		Free	Free		
Sign Control	0%			0%	0%		
Grade	0.95	0.95	0.95	0.95	0.95	0.95	
Peak Hour Factor	15	16	24	547	839	24	
Hourly flow rate (vph)	10	10		10	10		
Pedestrians	3.6			3.6	3.6		
Lane Width (m)	1.2			1.2	1.2		
Walking Speed (m/s)				1	1		
Percent Blockage	1				-		
Right turn flare (veh)				None	None		
Median type				None	110/10		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked		450	B73				
vC, conflicting volume	1192	452	6/3				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1192	452	873				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
(F (s)	3.5	3.3	2.2				
p0 queue free %	91	97	97				
cM capacity (veh/h)	171	546	762				
	EB 1	NB 1	NB2	SB 1	SB 2		
Direction, Lane #	31			559	304		
	15		. 0	0	0		
Volume Left	16			0	24		
Volume Right	265			1700	1700		
cSH	0.12			0.33	0.18	3	
Volume to Capacity	3.1)	A CONTRACTOR OF A CONTRACTOR O
Queue Length 95th (m)	20.4				0.0)	
Control Delay (s)	20.4		A 0.0				
Lane LOS	20.4			0.0)		
Approach Delay (\$)		4 U.		510			
Approach LOS		-		-	-	-	
Intersection Summary		-		-	-		
Average Delay			0.6		ICILL OF	el of Service	A
Intersection Capacity Util	ization		44-19		ICU Let		

Synchro 9

AU

: Alexis Park Drive	& 36 Av	enue						PM Peak	Existing
3/25/2022	-	•	†	1	5	ţ			
	WBL	WBR	NET	NBR	SBL.	SBT		1000	
lovement	¥		41			47			
ane Configurations	в	2	525	4	2	804			
raffic Volume (veh/h)	8	2	525	4	2	804			
uture Volume (Veh/h)	-	-	Free			Free			
Sign Control	Stop 0%		0%			0%			
Grade		0.95	0.95	0.95	0.95	0.95			
Peak Hour Factor	0.95	2	553	4	2	846			
Hourly flow rate (vph)	В	2	10	-		10			
Pedestrians	10		3.6			3.6			
Lane Width (m)	3.6		1.2			1.2			
Walking Speed (m/s)	1.2					1			
Percent Blockage	1		1						
Right turn flare (veh)						None			
Median type			None			TACITO			
Median storage veh)									
Upstream signal (m)									
pX, platoon unblocked					= 0.7				
vC, conflicting volume	1002	298			567				
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	1002	298			567				
tC, single (s)	6.8	6.9			4.1				
tC, 2 stage (s)									
(6, 2 stage (6)	3.5	3.3			2.2				
p0 queue free %	97	100			100				
cM capacity (veh/h)	235	686			993				-
Direction, Lane #	WB 1	NB-1	NB2	SB 1	SB 2		1000		
Volume Total	10		188	284	564				
	8		0	2	0				
Volume Left	2		4	0	0				
Volume Right	270			993	1700				
cSH	0.04			0.00	0.33	J			
Volume to Capacity	0.04				0.0)			
Queue Length 95th (m)	18.8				0.0)			
Control Delay (s)		,	0.0	A					
Lane LOS	(-	0.0					
Approach Delay (s)	18.0			0.0					
Approach LOS	(,	-	-	_	-	- and a state		-
Intersection Summary		-			-	-			
Average Delay			0.4			el of Service		A	
Intersection Capacity Util	lization		36.4%		ICO Lev	EI UI GEI NUE			
Analysis Period (min)			1:	0					

3/25/2022	•	-	~	1	-	۹.	•	1	1	5	1	1
		-		NO1	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
lovement	EBL		EBR	WBL	4	inort		4			+1+	
ane Configurations		4	12	18	2	12	8	519	11	11	674	127
Traffic Volume (veh/h)	20	2	12	18	2	12	В	519	11	11	674	127
uture Volume (Veh/h)	20	2	14	10	Stop			Free			Free	
Sign Control		Stop			0%			0%			0%	
Grade		0%	0.05	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Peak Hour Factor	0.95	0.95	0.95	19	2	13	8	546	12	12	709	134
Hourly flow rate (vph)	21	2	13	19	10	10		10			10	
Pedestrians		10			3.6			3.6			3.6	
Lane Width (m)		3.6			1.2			1.2			1.2	
Walking Speed (m/s)		12			1.2			1			1	
Percent Blockage		1										
Right turn flare (veh)								None			None	
Median type								Home				
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked					4455	572	853			568		
vC, conflicting volume	1402	1394	442	980	1455	372	000					
vC1, stage 1 conf vol												
vC2, stage 2 conf vol			_			572	853			568		
vCu, unblocked vol	1402	1394	442	980	1455	6.9	4.1			4.1		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	0.9	49-1					
tC, 2 stage (s)						3.3	2.2			2.2		
IF (s)	3.5	4.0	3.3	3.5	4.0		99			99		
p0 queue free %	77	99	98	90	98	97	775			992		
cM capacity (veh/h)	91	135	554	188	124	456	115					-
	EB 1	WB 1	NB 1	S8 1	S8 2					-		_
Direction, Lane #		34	566	366	488							
Volume Total	36	19	8	12	0							÷
Volume Left	21		12	0	134							
Volume Right	13	13	775	992								
cSH	134			0.01								
Volume to Capacity	0.27			0.01								
Queue Length 95th (m)	8.1			0.4								
Control Delay (s)	41.4											
Lane LOS	E										_	
Approach Delay (s)	41.4			0.2	-							
Approach LOS	E	E 0	•			-	-	-	-	-	-	-
Intersection Summary		1.1		19	_	-		-	-			
Average Delay			1.7		10111	el of Servi	00			A		
Intersection Capacity Util	ization		47.3%		ICU Lev	ei or servi	6					

AU

	×	1	•	1	+	1	
	-	-	1				
Advement	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	Y			44	41		
raffic Volume (veh/h)	25	22	5	619	479	8	
uture Volume (Veh/h)	25	22	5	619	479	8	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
lourly flow rate (vph)	26	23	5	652	504	8	
Pedestrians	10			10	10		
.ane Width (m)	3.6			3,6	3.6		
Valking Speed (m/s)	1.2			1.2	1.2		
Percent Blockage	1			1	1		
Right turn flare (veh)							
Median type				None	None		
Vedian storage veh)							
Jpstream signal (m)							
X. platoon unblocked							
C, conflicting volume	864	276	522				
C1, stage 1 conf vol							
C2, stage 2 conf vol							
Cu, unblocked vol	864	276	522				
C, single (s)	6.8	6.9	4.2				
C, 2 stage (s)							
F (s)	3.5	3.3	2.2				
00 queue free %	91	97	100				
M capacity (veh/h)	287	709	1011				
Direction, Lane #	EB 1	NB 1	NB 2	S8 1	58.2		
/olume Total	49	222	435	336	176		
/olume Loft							
	26	5	0	0	0		
Volume Right	23	0	0	0	8		
SH	398	1011	1700	1700	1700		
Volume to Capacity	0.12	0.00	0.26	0.20	0.10		
Queue Length 95th (m)	3.3	0.1	0.0	0.0	0.0		
Control Delay (s)	15.3	0.2	0.0	0.0	0.0		
ane LOS	C	A					
Approach Delay (s)	15.3	0.1		0.0			
Approach LOS	С						
intersection Summary		-	15-21				
Average Delay			0.7				And the second sec
Intersection Capacity Utilization	ation		33.4%	- 10	CU Level o	of Service	A
Analysis Period (min)			15				

2: Alexis Park Drive 03/25/2022	5 0L 0 0 P	wende	5				AM Peak Hot Background (202
	4	•	1	1	1	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		41-		-	41	
Traffic Volume (veh/h)	3	2	622	4	2	486	
Future Volume (Veh/h)	3	2	622	4	2	486	
Sign Control	Stop	-	Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	3	2	655	4	2	512	
Pedestrians	10	-	10	-	-	10	
Lane Width (m)	3.6		3.6			3.6	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	1		1.2			1.2	
Right lum flare (veh)							
Median type			None			None	
Median storage veh)			NONC			THONG	
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	937	350			669		
vC1, stage 1 conf vol	501	300			005		
vC2, stage 2 conf vol							
vCu, unblocked vol	937	350			669		
tC, single (s)	6.8	6.9			4.2		and the second se
IC, 2 stage (s)	0.0	0.0			7.4		
IF (s)	3.5	3.3			2.2		
p0 queue free %	99	100			100		
cM capacity (veh/h)	258	636			890		
Direction, Lane #	WB1	NB 1	NB 2	S8 1	SB 2	_	
Volume Total	5	437	222	173	341		
Volume Left	3	0	0	2	0		
Volume Right	2	0	4	0	0		
cSH	339	1700	1700	890	1700		
Volume to Capacity	0.01	0.26	0.13	0.00	0.20		
Queue Length 95th (m)	0.4	0.20	0.0	0.00	0.20		
Control Delay (s)	15.8	0.0	0.0	0.1	0.0		
Lane LOS	C	0.0	0.0	A	0.0		
Approach Delay (s)	15.8	0.0		0.0			
Approach LOS	C	0.0		0.0			
Intersection Summary		-	-	-	-	of the second	Contract Section 2 and 2
Average Delay			0.1		-		the second second
Intersection Capacity Utiliza	ation		30.2%	IC	U Level	of Service	A
Analysis Period (min)			15	10			

03/25/2022										AM Peak Hour Background (2025)			
LINE ADAM IN A	۶	-	Y	1	-	•	1	1	1	1	ţ	1	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB	
Lane Configurations		4			4.			ele-			410	_	
Traffic Volume (veh/h)	20	2	15	8	2	2	5	584	7	10	422	7	
Future Volume (Veh/h)	20	2	15	8	2	2	5	584	7	10	422	7	
Sign Control		Stop			Stop			Free			Free		
Grade		0%			0%			0%			0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9	
Hourly flow rate (vph)	21	2	16	8	2	2	5	615	7	11	444	7	
Pedestrians		10			10			10			10		
Lane Width (m)		3.6			3.6			3.6			3.6		
Walking Speed (m/s)		1.2			1.2			1.2			1.2		
Percent Blockage		1			1			1			1		
Right turn flare (veh)													
Median type								None			None		
Median storage veh)													
Upstream signal (m)													
pX, platoon unblocked													
vC, conflicting volume	1155	1156	280	910	1190	638	529			632			
vC1, stage 1 conf vol													
vC2, stage 2 conf vol													
vCu, unblocked vol	1155	1156	280	910	1190	638	529			632			
IC, single (s)	75	6.5	6.9	7.5	6.5	6.9	42			4.2			
tC, 2 stage (s)													
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2			
p0 queue free %	85	99	98	96	99	100	100			99			
cM capacity (veh/h)	144	189	706	214	160	412	1005			919			
Direction, Lane #	EB 1	WB1	NB 1	SB 1	S8 2	1.10	-	1		100	100		
Volume Total	39	12	627	233	297							-	
Volume Left	21	8	5	11	0								
Volume Right	16	2	7	0	75								
cSH	217	225	1005	919	1700								
Volume to Capacity	0.18	0.05	0.00	0.01	0.17								
Queue Length 95th (m)	5.1	1.3	0.1	0.3	0.0								
Control Delay (s)	25.1	21.9	0.1	0.5	0.0								
Lane LOS	D	С	A	A									
Approach Delay (s)	25.1	21.9	0.1	0.2									
Approach LOS	D	С											
Intersection Summary	-		1	1	1.1		100				-		
Average Delay			12		-					-			
Intersection Capacity Utilizal	tion		48.0%	10	U Level	of Service			А				
Analysis Period (min)			15										

1: Alexis Park Drive 03/25/2022	= 01 35 A	venue					PM Peak Hou Background (202
	۶	~	1	†	ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			44	1÷		
Traffic Volume (veh/h)	14	15	24	536	821	24	
Future Volume (Veh/h)	14	15	24	536	821	24	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	15	16	25	564	864	25	
Pedestrians	10			10	10		
Lane Width (m)	3.6			3.6	3.6		
Walking Speed (m/s)	1.2			1.2	1.2		the second se
Percent Blockage	1			1	1		
Right turn fare (veh)							
Median type				None	None		
Median storage veh)				TIDITO	Hone		
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1228	464	899				
vC1, stage 1 conf vol	TELO	404	000				
vC2, stage 2 conf vol							
vCu, unblocked vol	1228	464	899				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)	0.0	0.0					
tF (s)	3.5	3.3	2.2				
p0 queue free %	91	97	97				
cM capacity (veh/h)	162	535	745				
Direction, Lane #	EB 1	NB 1	NB 2	SB 1	SB 2		
Volume Total	31	213	376	576	313		
Volume Left	15	25	0	0	0		
Volume Right	16	0	0	0	25		
cSH	253	745	1700	1700	1700		
Volume to Capacity	0.12	0.03	0.22	0.34	0.18		
Queue Length 95th (m)	3.3	0.8	0.0	0.0	0.0		
Control Delay (s)	21.2	1.5	0.0	0.0	0.0		
Lane LOS	C	Α					
Approach Delay (s)	21.2	0.5		0.0			
Approach LOS	С						
Intersection Summary	1000	2.2	< 10 ¹		- 25		
Average Delay			0.6				and the second s
Intersection Capacity Utiliza	ation		45.3%	IC	CU Level	of Service	A
Analysis Period (min)			15				

	4		1	1	5	↓	
1011-01-000A	WBL	WBR	NBT	NBR	SBL	SBT	
Aovement.	Y		41-			47	
ane Configurations	8	2	541	4	2	828	
raffic Volume (veh/h)	8	2	541	4	2	628	
Future Volume (Veh/h)	Stop	-	Free			Free	
Sign Control	0%		0%			0%	
Grade	0.95	0.95	0.95	0.95	0.95	0.95	
Peak Hour Factor	0.95	2	569	4	2	872	
Hourly flow rate (vph)	10	4	10		-	10	
Pedestrians			3.6			3.6	
Lane Width (m)	3.6		1.2			1.2	
Walking Speed (m/s)	1.2		1.2			1	
Percent Blockage	1		1				
Right turn flare (veh)			Mana			None	
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked					583		
vC, conflicting volume	1031	306			583		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1031	306			583		
IC, single (s)	6.8	6.9			4.1		
IC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	96	100			100		
cM capacity (veh/h)	225	678			979		
and the second sec	WB 1	NB 1	NB 2	SB 1	SB 2	A REAL PROPERTY.	
Direction, Lane #			194	293	581		
Volume Total	10		0	200	0		
Volume Left	8		4	0	0		
Volume Right	2		1700	979	1700		
cSH	259			0.00	0.34		
Volume to Capacity	0.04		0.11		0.0		
Queue Length 95th (m)	1.0		0.0		0.0		
Control Delay (s)	19.4		0.0	0.1 A			
Lane LOS	C			A 0.0			
Approach Delay (s)	19.4			0.0			
Approach LOS	(2					
Intersection Summary	1000					and the second	
Average Delay			0.1			1 (Oracian	A
Intersection Capacity Util	ization		37.1%	5	ICU Levi	el of Service	~

.....

3/25/2022	,	→	>	1	+	•	1	1	1	5	ŧ	1
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Movement	EBL	4	CDN	TTM	4			-			414	
ane Configurations	21	2	12	19	2	12	8	535	11	11	694	131
Traffic Volume (veh/h)	21	2	12	19	2	12	8	535	11	11	694	131
Future Volume (Veh/h)	21	Stop			Stop			Free			Free	
Sign Control		0%			0%			0%			0%	
Grade	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Peak Hour Factor	0.95	2	13	20	2	13	8	563	12	12	731	138
Hourly flow rate (vph)	11	10	15	20	10			10			10	
Pedestrians		3.6			3.6			3.6			3.6	
Lane Width (m)		1.2			1.2			1.2			1.2	
Walking Speed (m/s)		1.2			1			1			1	
Percent Blockage		1			-							
Right turn flare (veh)								None			None	
Median lype												
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked			151	1008	1498	589	879			585		
vC, conflicting volume	1443	1435	454	1008	1490	309	010					
vC1, stage 1 conf vol												
vC2, stage 2 conf vol		_		4000	1498	589	879			585		
vCu, unblocked vol	1443	1435	454	1008	6.5	6.9	4.1			4.1		
tC, single (s)	7.5	6.5	6.9	7.5	0.5	0.5	-					
tC, 2 stage (s)					4.0	3.3	2.2			2.2		
(F (s)	3.5	4.0	3.3	3.5	4.0	97	99			99		
p0 queue free %	74	98	98	89	98	444	758			978		
cM capacity (veh/h)	85	127	544	179	117	444	130		_			-
Direction, Lane #	E8 1	WB 1	NB 1	SB 1	SB 2		1.1.1		-	_		
Volume Total	37	35	583	378	504							
Volume Left	22	20	8	12	0							
Volume Right	13	13	12	0								
cSH	124	221	758	978								
CSH Volume to Capacity	0.30	0.16	0.01	0.01	0.30							
Queue Length 95th (m)	9.2	4.4	0.3	0.3	0.0							
Control Delay (s)	46.0			0.4	0.0	1						
Control Delay (s)	40.0 E											
	46.0				2							
Approach Delay (s) Approach LOS	40.0 E											
	-		-	-	1		5 - TE	127		the second		-
Intersection Summary	-	-	1.9									
Average Delay	12.0		48.1%		ICU1 ev	el of Serv	ice			A		
Intersection Capacity Utili Analysis Period (min)	zalion		40.1%		100 101	0.0.0011						

AU

Synchro 9

54

Kowament EBL EBR NBI SBT SBR ane Configurations Y 41 F1 Traffic Volume (velv/n) 27 24 6 679 525 9 Sign Control Stop Free Free </th <th>1: Alexis Park Drive 03/25/2022</th> <th>e & 35 A</th> <th>venue</th> <th></th> <th></th> <th></th> <th></th> <th>AM Peak Ho Background (20</th>	1: Alexis Park Drive 03/25/2022	e & 35 A	venue					AM Peak Ho Background (20
Ane Configurations Y Ath Ath Traffic Volume (velv/h) 27 24 6 679 525 9 Volume (Velv/h) 27 24 6 679 525 9 Sign Control Stop Free Free 9 9 Sign Control Stop 0.95 0.95 0.95 0.95 0.95 Sign Control 0.95 0.95 0.95 0.95 0.95 0.95 Outry flow rate (vph) 28 25 6 715 553 9 Pedestinas 10 10 10 Araking Speed (m/s) 1.2 1.2 1.2 . 1.2 . . . Veldian type None None None None </th <th></th> <th>۶</th> <th>></th> <th>1</th> <th>Ť</th> <th>Ļ</th> <th>1</th> <th></th>		۶	>	1	Ť	Ļ	1	
raffic Volume (veluh) 27 24 6 679 525 9 viture Volume (Veluh) 27 24 6 679 525 9 gin Control Stop Free Free Free 9 Sing Control Stop 0% 0% 0% 0% Sing Control 0.95 0.95 0.95 0.95 0.95 Volume (Veluh) 28 25 6 715 553 9 Pedestrians 10 10 10 ane Width (m) 3.6 3.6 3.6 Valking Speed(m/s) 1.2 1.2 1.2 Percent Blockage 1 1 Vight Im flare (velu) Veldein type None None None None Vight Im flare (velu) Veldein type None None None None Vight Im flare (velu) Veldein type None None None None Vight Im flare (velu) Velume Totol C.2 stop (Velume Totol) C.2 stop (Velume Totol) C.2 stop (Velume Totol) C.2	Novement	EBL	EBR	NBL	NBT	SBT	SBR	
Traffic Volume (velvh) 27 24 6 679 525 9 viture Volume (velvh) 27 24 6 679 525 9 Sign Control Stop Free Free Free 9 Sign Control Stop 0% 0% 0% 0% Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 Outry flow relev(ph) 28 25 6 715 553 9 Pedestrians 10 10 10 10 10 10 10 .ane Width (m) 3.6 3.6 3.6 3.6 3.6 3.6 3.6 Valking Speed (m/s) 1.2 1.2 1.2 1.2 2.2 1.2 2.2 Percent Blockage 1 1 1 1 1 1.5 2.5	ane Configurations	Y			44			
Stop Free Free Free Sign Control Stop Free Free Sign Control Stop Free Free Sign Control 0% 0% 0% Seak Hour Factor 0.95 0.95 0.95 0.95 Stade 0% 10 10 10 Loard Mow rate (vph) 28 25 6 715 553 9 Vedestrians 10 10 10 10 10 1 1 Lane Width (m) 3.6 3.6 3.6 3.6 3.6 3.6 Veldestin storage (mk) 1.2 1.2 1.2 1.2 1.2 Stopt turn flare (veh) None None None Veldian storage veh) C, conflicting volume 947 301 572			24	6			9	
Sign Control Stop Free Free Free Brade 0%<					679			
Trade 0% 0% 0% Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 Outry flow relev(ph) 28 25 6 715 553 9 Pedestrians 10 10 10 10 10 10 ane Width (m) 3.6 3.6 3.6 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 1.2 Percent Blockage 1 1 1 Wedian storage veh)		Stop		_	Free	Free	-	
Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 fourly flow rate (vph) 28 25 6 7/15 553 9 Pedestrians 10 10 10 .ane Width (m) 3.6 3.6 3.6 Percent Blockage 1 1 1 Right turn flare (veh) Vedian storage veh) Jpstream signal (m) X, platoon unblocked CC, conflicting volume 947 301 572 CC, single (s) 6.8 6.9 4.2 CC, stage 1 conf vol CC, stage 2 conf vol CC, stage 1 conf vol CC, stage 2 conf vol CC, stage 1 conf vol CC, stage 2 conf vol CC, stage 1								
Houry flow rate (vph) 28 25 6 715 553 9 Pedestinans 10 12 12 12 12 12 12 10 10 100			0.95	0.95			0.95	
Pedestrians 10 10 10 10 ane Width (m) 3.6 3.6 3.6 Ane Width (m) 3.6 3.6 3.6 Valking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 1 1 1 Right Im flare (veh) Wedian type None None Wedian storage veh) Jpstream signal (m) XX, platoou nublocked XZ, conflicting volume 947 VCl, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol VCL, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol VCL, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol VCL, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol VCL, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol VCL, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol XZ, stage 2 conf vol VCL, stage 2 conf vol SZ,								
ane Width (m) 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 Precent Blockage 1 1 1 Right turn flare (veh) None None None Vedian storage veh) Jpstream signal (m) X X None XC, conticiting volume 947 301 572 C VC1, stage 1 conf vol CC, conticiting volume 947 301 572 CC, conticiting volume 947 301 572 C C VC1, stage 1 conf vol C/C, stage (s) - - - - CC, unblocked vol 947 301 572 - - - CG, stage (s) 6.8 6.9 4.2 -								
Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 1 1 1 Sight fum flare (veh)								
Percent Blockage 1 1 1 1 Right turn fare (vek) Median storage veh) Upstream signal (m) XC, conflicting volume 947 301 572 VC1, stage 1 conf vol VC2, stage 2 conf vol Volume Right 25 0 0 0 0 Volume Right 361 968 1700 1700 1700 Volume Right 0, 16.7 0.3 0.0 0.0 Control Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Volume Right 0, 16.7 0.1 0.0 VOLUME VD2, VD2, VD2, VD2, VD2, VD2, VD2, VD2,								
None None None None Vedian strage veh)								
None None None Vedian storage veh) Upstream signal (m)					-	_		
Median storage veh) Upstream signal (m) XC, platoou mblocked VC, stage 2 conf vol VCU, stage 2 conf vol VCU, unblocked vol VCU, unblocked vol VCU, unblocked vol 947 301 572 VCU, stage 2 conf vol VCU, stage 2 conf vol Volume Total 0 conf vol Volume Right 0 conf vol Volume Right					None	None		
Upstream signal (m) X, platoon unblocked VC, protitical wolume VCC, stage 1 conf vol VCC, stage 1 conf vol VCC, stage 2 conf vol VCC, stage 2 conf vol VCL, unblocked vol VCL, stage (s) F(s) S, S, S					NUNC	INDIC		
Direction Lane # EB 1 N8 1 N8 2 S8 1 S8 2 Volume Total 53 244 477 369 193 Volume Sight 25 0 0 0 9 cSH 361 968 1700 1700 1700 Volume Sight 361 968 1700 0 0 Volume Laft 0.0 0 0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Cancel Logs C A Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Volume Xirme Surmary								
VC, conflicting volume 947 301 572 CC, stage 2 conf vol Volume C2, stage 2 conf vol Volume C2, stage 2 conf vol VCu, unblocked vol 947 301 572 VC, single (s) 6.8 6.9 4.2 (C, 2 stage (s) F(s) 3.5 3.3 2.2 D0 que of free % 89 96 99 MC capacity (veh/h) 254 684 968 Direction, Lane # EB1 NB1 NB2 SB1 SB2 Volume Total 53 244 477 369 193 Volume Total 50 0 0 0 cSH 361 968 1700 1700 1700 Volume to Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 Lane LOS C A Approach LOS<								
xC1, stage 1 conf vol xC2, stage 2 conf vol xCu, unblocked vol 947 301 572 xCu, unblocked vol 947 301 572 C, single (s) 6.8 6.9 4.2 C, 2 stage (s) EF (s) 3.5 3.3 2.2 Direction, Lane $\#$ EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 Volume Left 28 6 0 0 0 volume Left 28 6 0 0 0 xOlume Left 968 1700 1700 1700 Volume Loft 0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Control Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Control Delay (s) 16.7 0.1 Control Delay (s) 16.7 Control Delay (s) 1		047	201	572				
vC2, stage 2 conf vol vC3, unblocked vol 947 301 572 (C, single (s) 6.8 6.9 4.2 IC, 2 stage (s) IF (s) 3.5 3.3 2.2 p0 queue free % 89 96 99 Od capacity (veh/h) 254 684 968 Direction, Lane # EB1 NB1 NB2 SB1 SB2 Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 volume Right 25 0 0 0 9 cSH 361 968 1700 1700 1700 Volume Right 361 968 1700 1700 1700 Volume St Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Control Delay (s) 16.7 0.1 Control Delay (s) 16.7 C		347	301	372				
vCu, unblocked vol 947 301 572 C, single (s) 6.8 6.9 4.2. (C, 2 stage (s) FF (s) 3.5 3.3 2.2. p0 queue free % 89 96 99 vM capacity (veh/h) 254 684 968 Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 Volume Right 25 0 0 0 9 cSH 361 968 1700 1700 1700 Volume to Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach LOS C Intersection Summary								
C, single (s) 6.8 6.9 4.2 C, 2 stage (s)		047	201	670				
C, 2 stage (s) IF (s) 3.5 3.3 2.2 D0 queue free % 89 96 99 Mc apacity (veh/h) 254 684 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 Volume Right 25 0 0 9 968 Use Left 0.15 0.01 0.28 0.22 0.11 Queue Length S9th (m) 4.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 Control Delay (s) 16.7 0.1 0.0 Approach Delay (s) Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) Intersection Summary E Intersection Summary Intersection Summary								
IF (s) 3.5 3.3 2.2 D0 quee free % 89 96 99 Mc capacity (veh/h) 254 684 968 Direction, Lone # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 53 244 477 369 193 Volume Right 25 0 0 0 Volume Right 25 0 0 9 cSH 361 968 1700 1700 1700 Volume Lo Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 Approach LOS C A Approach LOS C		0.0	0.9	4.2				
p0 Queue free % 89 96 99 M capacity (veh/h) 254 684 968 Direction, Lane # EB1 N81 N52 S81 S82 Volume Total 53 244 477 369 193 Volume Capacity 0.15 0.01 0.0 0 Volume Right 25 0 0 0 9 cSH 361 968 1700 1700 1700 Volume Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 35th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 0.0		26	2.2	2.2				
Micapacity (veh/h) 254 684 968 Direction, Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 Volume Right 25 0 0 0 Volume Right 25 0 0 0 Volume Right 25 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Approach Delay (s) 16.7 0.1 0.0 Approach Delay (s) 16.7 0.1 Intersection Summary U U U U U U								
Direction Lane # EB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 Volume Right 25 0 0 0 0 volume Right 25 0 0 9 0 cSH 361 968 1700 1700 1700 Volume Lo Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Lane LOS C A Approach LOS C A Approach LOS C Image: Stimmary Image: Stimmary Image: Stimmary								
Volume Total 53 244 477 369 193 Volume Left 28 6 0 0 0 Volume Right 25 0 0 0 0 cSH 361 968 1700 1700 1700 Volume to Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Approach LOS C A Approach LOS C Intersection Summary		204	004		-			
Volume Left 28 6 0 0 0 Volume Right 25 0 0 9 cSH 361 968 1700 1700 Volume Logacity 0.15 0.01 0.28 0.22 Queue Length 95th (m) 4.1 0.1 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach LOS C Image: Scoon Stummary Extension Stummary Scoon Stummary Scoon Stummary								
Volume Right 25 0 0 9 sSH 361 968 1700 1700 Volume to Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach LOS C Image: Coor Summary C Image: Coor Summary C	Volume Total	53		477				
SH 361 968 1700 1700 1700 Volume to Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach LOS C A Approach LOS C A								
Volume to Capacity 0.15 0.01 0.28 0.22 0.11 Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A	Volume Right							
Queue Length 95th (m) 4.1 0.1 0.0 0.0 0.0 Control Delay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach LOS C Image: Control Delay (s) 16.7 0.1 0.0 Intersection Stimmary C C C C C		361	968	1700	1700	1700		
Control Defay (s) 16.7 0.3 0.0 0.0 0.0 Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach LOS C I Intersection Summary								
Lane LOS C A Approach Delay (s) 16.7 0.1 0.0 Approach LOS C Intersection Summary								
Approach Delay (s) 16.7 0.1 0.0 Approach LOS C Intersection Summary				0.0	0.0	0.0		
Approach LOS C								
inlersection Summary		16.7	0.1		0.0			
	Approach LOS	С						
	Intersection Summary	24.5%	L. Service			100	-	
Average Detay. 0.7	Average Delay			0.7				
Intersection Capacity Utilization 35.9% ICU Level of Service A	Intersection Capacity Utiliza	ation			IC	CU Level	of Service	A
Analysis Period (min) 15				15				

2: Alexis Park Drive 03/25/2022							Background (203
	1	A.	1	1	5	Ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	NAMES OF A DESCRIPTION
Lane Configurations	Y		4P			44	
Traffic Volume (veh/h)	3	2	683	5	2	533	
Future Volume (Veh/h)	3	2	683	5	2	533	
Sign Control	Stop	-	Free		-	Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	and the second se
Hourly flow rate (vph)	3	2	719	5	2	561	
Pedestrians	10	_	10		-	10	
Lane Width (m)	3.6		3.6			3.6	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	1		1			1	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1026	382			734		
vC1, stage 1 conf vol	1010						
vC2, stage 2 conf vol							
vCu, unblocked vol	1026	382			734		
tC, single (s)	6.8	6.9			4.2		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	100			100		
cM capacity (veh/h)	226	606			840		
Direction, Lane #	WB1	NB1	NB2	S8 1	S8 2		
Volume Total	5	479	245	189	374		
Volume Left	3	0	0	2	0		
Volume Right	2	0	5	0	0		
cSH	302	1700	1700	840	1700		
Volume to Capacity	0.02	0.28	0.14	0.00	0.22		
Queue Length 95th (m)	0.4	0.0	0.0	0.1	0.0		
Control Delay (s)	17.1	0.0	0.0	0.1	0.0		
Lane LOS	С			A			and the second second
Approach Delay (5)	17.1	0.0		0.0			
Approach LOS	С						
Intersection Summary	1	1	7.5			-	
Average Delay		1711	0.1				
Intersection Capacity Utiliza	ation		31.9%	IC	U Level	of Service	A
Analysis Period (min)			15				

	٠	-	>	6	-	*	٩.	1	-	1	1	4
1000 C	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vovement	E04.	4	EDR	AKCUT	4	TROPS	ANDL	4	(NDR	JOL	114	001
ane Configurations	21	2	17	9	2	2	6	641	8	11	463	78
Traffic Volume (veh/h) Future Volume (Veh/h)	21	2	17	9	2	2	6	641	8	11	463	78
Sign Control	21	Stop	11	5	Stop	4	U	Free	0		Free	1
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0 95	0.95	0.95	0.95	0 95	0.95	0.95
Hourly flow rate (vph)	22	0.90	18	9	2	2	6	675	8	12	487	82
Pedestrians	22	10	10	3	10	2	0	10	0	12	10	04
ane Width (m)		3.6			3.6			3.6			3.6	
Nalking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1.2			1			1.2			1.2	
		-						-				
Right turn flare (veh)								None			None	
Median type								none			NUTE	
Median storage veh)												
pX, platoon unblocked	1266	1267	304	998	1304	699	579			693		
vC, conflicting volume	1200	1207	304	990	1304	699	5/9			093		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	1266	1267	304	998	1304	699	579			693		
vCu, unblocked vol					6.5	6.9	4.2			4.2		
tC, single (s)	7.5	6.5	6.9	7.5	0.5	0.9	4.2			4.2		
tC, 2 stage (s) IF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	3.5 B1	4.0	3.3 97	3.5 95	4.0 99	3.3 99	99			99		
	118	161	680	183	153	376	962			871		
cM capacity (veh/h)	118	101		103	103	3/0	902			6/1		
Direction, Lane #	EB 1	WB 1	NB1	SB 1	\$8.2	32.7	-		1.11	100	100	
Volume Total	42	13	689	256	326							
Volume Left	22	9	6	12	0							
Volume Right	18	2	8	0	82							
cSH	187	192	962	871	1700							
Volume to Capacity	0.22	0.07	0.01	0.01	0.19							
Queue Length 95th (m)	6.6	1.7	0.2	0.3	0.0							
Control Delay (s)	29.7	25.1	0.2	0.6	0.0							
Lane LOS	D	D	A	Α								
Approach Delay (s)	29.7	25.1	0.2	0.3								
Approach LOS	D	D										
Intersection Summary	-	1	-	-	123		1113	il and a				
Average Delay			1.4	100		-					11	
Intersection Capacity Utiliz	ation		51.9%	IC	CU Level	of Service			A			
Analysis Period (min)			15									

1: Alexis Park Drive 03/25/2022	e 6 35 A	venue					PM Peak Hot Background (203
	≯	\mathbf{r}	-	†	Ŧ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	Y			44	1		
Traffic Volume (veh/h)	16	17	26	588	901	26	
Future Volume (Veh/h)	16	17	26	586	901	26	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	17	18	27	619	948	27	
Pedestrians	10			10	10		
Lane Width (m)	3.6			3.6	3.6		
Walking Speed (m/s)	1.2			1.2	1.2		
Percent Blockage	1			1	1		
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1345	508	985				
vC1, stage 1 conf vol							
vC2. stage 2 conf vol							
vCu, unblocked vol	1345	508	985				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
IF (s)	3.5	3.3	2.2				
p0 queue free %	87	96	96				
cM capacity (veh/h)	135	502	691				
Direction, Lane #	EB 1	NB 1	NB2	SB 1	SB 2		
Volume Total	35	233	413	632	343		
Volume Left	30	233	413	032	343		and the second second second
	1/	2/	0	0	27		
Volume Right cSH	216	691	1700	1700	1700		
					0.20		
Volume to Capacity	0.16	0.04	0.24	0.37			
Queue Length 95th (m)	4.5	1.0	0.0	0.0	0.0		
Control Delay (s) Lane LOS	24.8	1.6	0.0	0.0	0.0		
	C 24.8	A 0.6		0.0			
Approach Delay (s) Approach LOS	24.8 C	0.6		0.0			
	U	_	_	_	-	-	
Intersection Summary				_			
Average Delay			0.8			(D)	
Intersection Capacity Utilization	ation		48.2%	10	CU Level	of Service	A
Analysis Period (min)			15				

2: Alexis Park Drive 03/25/2022	9 & 36 A	venue)				PM Peak Hou Background (2035
	<	•	1	1	1	Ļ	
Avement	WBL	WBR	NBT	NBR	SBL	SBT	there is a part of the second
ane Configurations	Y		1t			44	
raffic Volume (veh/h)	9	2	593	5	2	909	
uture Volume (Veh/h)	9	2	593	5	2	909	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
ourly flow rate (vph)	9	2	624	5	2	957	
edestrians	10		10			10	
ane Width (m)	3.6		3.6			3.6	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	1		1			1	
Right turn flare (veh)							
Median type			None			None	
Viedian storage veh)			NONC			HONG	
Upstream signal (m)							
X, platoon unblocked							
/C, conflicting volume	1129	334			639		
vC1, stage 1 conf vol	1123	0.04			000		
vC2, stage 2 conf vol							
vCu, unblocked vol	1129	334			639		
tC, single (s)	6.8	6.9			4.1		
iC, 2 stage (s)	0.0	0.9			4.1		
IC, Z SLAUJE (S) IF (S)	3.5	3.3			2.2		
p0 queue free %	3.5	100			100		
	194	650			933		
cM capacity (veh/h)				1000			
Direction, Lane #	WB 1	NB 1	NB 2	SB 1	S8-2		
Volume Total	11	416	213	321	638		
Volume Left	9	0	0	2	0		
Volume Right	2	0	5	0	0		
cSH	222	1700	1700	933	1700		
Volume to Capacity	0.05	0.24	0.13	0.00	0.38		
Queue Length 95th (m)	1.2	0.0	0.0	0.1	0.0		
Control Delay (s)	22.0	0.0	0.0	0.1	0.0		
Lane LOS	C			A			
Approach Delay (s)	22.0	0.0		0.0			
Approach LOS	C				00.		
Intersection Summary					-		
Average Delay	-		0.2	_			
Intersection Capacity Utiliza	ation		39.4%	IC	U Level	of Service	A
Analysis Period (min)			15				

3: Alexis Park Drive & 03/25/2022	32 A	venue								PM Peak Hour Background (2035)			
	۶	-+	\mathbf{i}	1	+	A.	1	†	1	6	Ŧ	-	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	58	
Lane Configurations		4.			440			444			412		
Traffic Volume (veh/h)	23	2	14	20	2	14	9	586	12	12	762	14	
Future Volume (Veh/h)	23	2	14	20	2	14	9	586	12	12	762	14	
Sign Control		Stop			Stop			Free			Free		
Grade		0%			0%			0%			0%		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9	
Hourly flow rate (vph)	24	2	15	21	2	15	9	617	13	13	802	15	
Pedestrians		10			10			10			10		
Lane Width (m)		3.6			3.6			3.6			3.6		
Walking Speed (m/s)		1.2			1.2			1.2			1.2		
Percent Blockage		1			1			1			1		
Right turn flare (veh)													
Median type								None			None		
Median storage veh)													
Upstream signal (m)													
pX, platoon unblocked													
	1582	1572	497	1104	1642	644	964			640			
vC1, stage 1 conf vol											-		
vC2, stage 2 conf vol												-	
	1582	1572	497	1104	1642	644	964			640			
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1			
tC, 2 stage (s)													
(F (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2			
p0 queue free %	64	98	97	86	98	96	99			99			
cM capacity (veh/h)	66	105	510	151	95	409	704			932			
Direction, Lane #	EB 1	WB1	NB 1	SB 1	SB 2					- 11			
Volume Total	41	38	639	414	553								
Volume Left	24	21	9	13	0								
Volume Right	15	15	13	0	152								
cSH	99	193	704	932	1700						100		
Volume to Capacity	0.41	0.20	0.01	0.01	0.33								
Queue Length 95th (m)	13.6	5.7	0.3	0.3	0.0								
Control Delay (s)	64.5	28.2	0.3	0.4	0.0								
Lane LOS	F	D	A	A									
Approach Delay (s)	64.5	28.2	0.3	0.2									
Approach LOS	F	D											
Intersection Summary	-	_	1			-		-	200	- 17	1000	-	
Average Delay			2.4				-						
Intersection Capacity Utilization			51.6%	ic	CU Level	of Service			A				
Analysis Period (min)			15										

Novement EBL EBT EBR WBL WBT WBR NBL NBL SBL SB	3/25/2022	٠		~	1	+	4		+	-	5	Ļ	4
Movement EBL EBL EBR With With <t< th=""><th></th><th>-</th><th>-+</th><th>*</th><th>-</th><th>LAUR T</th><th>1000</th><th>AND I</th><th>MOT</th><th>NOD</th><th>SRI</th><th>SBT</th><th>SBR</th></t<>		-	-+	*	-	LAUR T	1000	AND I	MOT	NOD	SRI	SBT	SBR
and Configurations 25 0 22 20 0 30 5 635 8 11 486 Traffic Volume (veh/h) 25 0 22 20 0 30 5 635 8 11 486 Sign Control Stop Stop OW 0% <td< td=""><td>lovement</td><td>EBL</td><td></td><td>EBR</td><td>WBL.</td><td></td><td>WBR</td><td>NOL</td><td></td><td>TAPAT</td><td></td><td></td><td></td></td<>	lovement	EBL		EBR	WBL.		WBR	NOL		TAPAT			
Traffic Volume (velvh) 25 0 22 20 0 30 5 635 8 11 486 Future Volume (Velvh) 25 0 22 20 0 30 5 635 8 11 486 Future Volume (Velvh) 25 0 22 20 0 30 5 635 8 11 486 Sign Control 095 0.95 <td< td=""><td>ane Configurations</td><td></td><td></td><td></td><td></td><td></td><td>00</td><td>6</td><td></td><td>8</td><td>11</td><td></td><td>8</td></td<>	ane Configurations						00	6		8	11		8
Enture (veh/h) 25 0 22 20 0 30 3 30 3 30 7 Free Free Free Free 6% 0%												486	6
Sign Control Stop Over Oracle Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over State Over Over Over Over Over Over State Over Over Over Over Over Over Over Over	Future Volume (Veh/h)	25		22	20	-	30	J				Free	
Grade 0%	Sign Control											0%	
Peak Hour Factor 0.95							0.05	0.05		0.95	0.95	0.95	0.9
Hourly flow rate (vph) 26 0 23 21 0 0 32 0 0 0 0 10 10 Pedestrians 10 10 10 10 10 10 Pedestrians 10 10 10 10 10 10 Median Speed (m/s) 12 12 12 12 12 Percent Blockage 1 1 1 1 1 Median type None None None None None None None (vc), conflicting volume 936 1246 280 1005 1246 358 530 686 vc, conflicting volume 936 1246 280 1005 1246 358 530 686 vc, conflicting volume 936 1246 280 1005 1246 358 530 686 vc, canflicting volume 936 1246 280 1005 1246 358 530 686 vc, canflicting volume 936 1246 280 1005 1246 358 530 686 vc, canflicting volume 936 1246 280 1005 1246 358 530 686 vc, canflicting volume 936 1246 280 1005 1246 358 530 686 vc, canflicting volume 936 1246 280 1005 1246 358 530 686 vc, canflicting volume 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 280 1005 1246 358 530 686 vc, unblocked vol 936 1246 20 100 03 0.0 99 et case ten % 87 100 97 88 100 95 100 99 et case ten % 87 100 97 88 100 95 100 99 volume Right 23 32 0 8 0 8 csH 301 318 1004 1700 876 1700 Volume Right 23 32 0 0 0.0 0.0 Control Delay (s) 19.3 18.6 0.1 0.0 0.3 0.0 Control Delay (s) 19.3 18.6 0.1 0.3 Approach Delay (s) 19.3 18.6 0	Peak Hour Factor											512	
Pedestrians 10 12	Hourly flow rate (vph)	26		23	21		32	5		Ŭ		10	
Lane Width (m) 3.6 3.6 5.8 5.8 7.5 1.2 Walking Speed (m/s) 1.2 1.2 1.2 1.2 1.2 Percent Blockage 1 1 1 1 1 Right rum flare (veh) None None Median type None None None Wedian storage veh) Upstream signal (m) pX, platon unblocked vC, conflicting volume 936 1246 280 1005 1246 358 530 686 vC, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.2 4.2 tC, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.2 4.2 tC, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.2 4.2 tC, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.2 4.2 tC, single (s) 7.5 6.5 6.9 7.5 8.1 100 99 p0 queue free % 87 100 97 88 100 95 100 99 p0 queue free % 87 100 97 88 100 95 100 99 p0 queue free % 87 100 97 88 100 95 100 99 p0 queue free % 87 100 97 88 100 95 100 99 p0 queue free % 87 100 97 88 100 95 100 99 cM capacity (veh/h) 200 166 705 181 166 628 1004 876 Volume Eft 28 21 5 0 12 0 Volume Right 23 32 0 8 0 8 CSH 301 318 1004 1700 876 1700 Volume Icf 0.17 0.00 0.20 0.01 0.16 Queue Length S5h (m) 4.6 4.7 0.1 0.00 0.3 0.0 Control Delay (s) 19.3 18.6 0.1 0.3 Approach Delay (s) 19.3 18.6 0.2 0.0 0.0 0.0 Approach Delay (s) 19.3 18.6 0.2 0.0 0.0 Approach Delay (s) 19.3 18.6 0.2 0.0 0.0 Approach Delay (s) 19.3 18.6 0.1 0.3 Approach Delay (s) 19.3 18.6 0.1												3.6	
Walking Speed (m/s) 1.2 <th1.2< th=""> 1.2 <th1.2< th=""></th1.2<></th1.2<>	Lane Width (m)												
Percent Blockage 1 None None Right tum flare (veh) None None None Median type None None None Median storage veh) Upstream signal (m) None None VC, conflicting volume 936 1246 280 1005 1246 358 530 686 vC1, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol 42 4.2 vC1, unblocked vol 936 1246 280 1005 1246 358 530 686 tC, stage 2 conf vol vC2, unblocked vol 936 1246 280 1005 1246 358 530 686 tC, stage 1 (s) 7.5 6.5 6.9 7.5 6.5 0.9 4.2 4.2 tC 2 stage (s) tf (s) 3.5 4.0 3.3 2.2 2.2 2.2 p0 queue free % B7 100 97 88 100 95 100 <td< td=""><td>Walking Speed (m/s)</td><td></td><td>1.2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Walking Speed (m/s)		1.2										
Right tum flare (veh) None None None Median type Median type None None None Upstream signal (m) pX, platon unblocked Vc. conflicting volume 936 1246 280 1005 1246 358 530 686 vC2, conflocing volume 936 1246 280 1005 1246 358 530 686 vC2, unblocked vol 936 1246 280 1005 1246 358 530 686 VC1, unblocked vol 936 1248 280 1005 1246 358 530 686 VC2, unblocked vol 936 1248 280 1005 1246 358 530 686 IC, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.2 4.2 p0 queue free % B7 100 97 88 100 95 100 99 Of queue free % B7 100 975 81			1			1							
Median type Invite Invite Median storage veh) Upstream signal (m) pX, platoon unblocked 936 1246 280 1005 1246 358 530 686 vC, conflicting volume 936 1246 280 1005 1246 358 530 686 vC2, stage 2 conf vol									Maga			None	
Median storage veh) Upstream signal (m) Median storage veh) VD, relation unblocked 936 1246 280 1005 1246 358 530 686 vC1, stage 1 conf vol vC2, stage 2 conf vol 426 358 530 686 vC1, unblocked vol 936 1246 280 1005 1246 358 530 686 tC, stage 2 conf vol vC1, unblocked vol 936 1246 280 1005 1246 358 530 686 tC, stage 1 conf vol v55 6.5 6.9 4.2 4.2 4.2 tC, 2 stage (s) : : : : : 99 :									NOTE			Homo	
Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol velowe 1 conf vol velowe 1 conf vol volume 1 conf vol vol vol vol vol vol vol vol													
pX, platoon unblocked vC, conflicting volume vC, stage 1 conf vol vC1, stage 2 conf vol vC2, stage 2 conf vol													
VC. conflicting volume 936 1246 280 1005 1246 358 330 111 VC1, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol	nX platoon unblocked							-00			696		
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol QC, unblocked vol VC2, unblocked vol VC3, unblocked vol VC3, unblocked vol VC3, unblocked vol VC3, unblocked vol TF (s) Stage 1 conf vol VC3, unblocked vol TF (s) Stage 2 conf vol VC3, unblocked vol TF (s) Stage 2 conf vol VC4, unblocked vol TF (s) Stage 2 conf vol VC4, unblocked vol TF (s) Stage 2 conf vol VC4, unblocked vol TF (s) VC4, unblocked vol TF (s) Stage 2 conf vol VC4, unblocked vol TF (s) Stage 2 conf vol Stage 2 conf vol Stage 2 conf vol VC4, unblocked vol TF (s) Stage 2 conf vol Stage 2 conf vol Stage 2 conf vol VC4, unblocked vol Stage 2 conf vol VC4, unblocked vol Stage 2 conf vol VC4, unblocked vol Stage 2 conf vol Sta		936	1246	280	1005	1246	358	530			000		
vC2, stage 2 conf vol 936 1246 280 1005 1246 358 530 686 vC0, unblocked vol 936 1246 280 1005 1246 358 530 686 LC, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.2 4.2 tC, single (s) tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 p0 queue free % B7 100 97 68 100 95 100 eM capacity (veh/h) 200 166 705 181 166 628 1004 676 Direction_tame # EB 1 WB 1 NB 2 SB 1 SB 2 Volume Total 49 53 339 342 268 264 Volume Right 23 32 0 8 0													
vCu, unblocked vol 936 1246 280 1005 1246 <th124< th=""> 1246 1246</th124<>	vC2_stage 2 conf vol										696		
IC, single (s) 7.5 6.5 6.9 7.5 6.3 6.3 6.3 4.2 IC, 2 stage (s) 10 9.7 8.3 0.3 3.2 2.2 p0 queue free % 87 100 97 88 100 95 100 99 of queue free % 87 100 97 88 100 95 100 99 of queue free % 87 100 97 88 100 95 100 99 of queue free % 87 100 97 88 100 95 100 99 Of queue free % 87 100 97 88 100 95 100 89 Output 166 705 181 106 628 1004 876 Volume Right 23 32 0 8 6 8 6 6 CsH 301 318 1004 1700 876 1700 1 1<0	vCu unblocked vol	936	1246	280	1005								
tC, 2 stage (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % B7 100 97 88 100 95 100 99 cdx capacity (velvh) 200 166 705 181 166 628 1004 876 Direction, Lane # EB 1 WB 1 NB 2 S8 1 S8 2 268 264 Volume Total 49 53 339 342 268 264 264 Volume Right 23 32 0 8 0 8 csch 66 cSH 301 318 1004 1700 876 1700 20		7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tF (s) 3.5 4.0 3.3 3.5 4.0 5.3 2.2 p0 queue free % B7 100 97 88 100 95 100 99 cM capacity (velvh) 200 166 705 181 166 628 1004 876 Direction, Lane # EB 1 WB 1 NB 2 SB 1 SB 2 264 Volume Total 49 53 339 342 268 264 Volume Right 23 32 0 8 0 8 cSH 301 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95th (m) 4.6 4.7 0.1 0.03 0.0 Control Delay (s) 19.3 18.6 0.1 0.3 Approach LoS C C A Approach LOS C C											2.0		
p0 gueue free % B7 100 97 88 100 93 100 93 100 93 100 876 Direction, Lane # EB I WB 1 NB 2 SB 1 SB 2 200 466 628 1004 876 Direction, Lane # EB I WB 1 NB 2 SB 1 SB 2 200 Volume Right 23 32 0 0 8 0 8 66 628 1004 876 Volume Right 23 32 0 0 8 0 8 6 6 628 1004 1700 876 1700 876 1700 876 1700 100		3.5	4.0	3.3									
CM capacity (veh/h) 200 166 705 181 166 628 1004 604 Direction, Lane # EB 1 WB 1 NB 2 SB 1 SB 2 Volume Total 49 53 339 342 268 264 Volume Total 28 21 5 0 12 0 Volume Left 28 21 5 0 12 0 Volume Right 23 32 0 8 0 8 cSH 301 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95th (m) 4.6 4.7 0.1 0.03 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 A A Approach LOS		87	100	97	68								
Direction Lane # EB 1 WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 49 53 339 342 268 264 Volume Left 26 21 5 0 12 0 Volume Right 23 32 0 8 0 8 CSH 301 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95th (m) 4.6 4.7 0.1 0.0 0.3 0.0 Control Delay (s) 19.3 18.6 0.1 0.3 A Approach Delay (s) 19.3 18.6 0.1 0.3 A Approach LOS C C K A A Approach LOS C C K K A		200	166	705	181	166	628	1004			6/0		
Direction, Late # LB Hor 53 339 342 268 264 Volume Right 28 21 5 0 12 0 Volume Right 23 32 0 8 0 6 CSH 301 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95h (m) 4.6 4.7 0.1 0.0 3 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lare LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 Approach Delay (s) 19.3 18.6 0.1 0.3 Approach LOS C C		Po 4	IND 1	NR.1	NR 2	S8.1	SB 2	-	1 24	1000			
Volume Total 49 0.33 0.03 0.12 0 Volume Right 28 21 5 0 12 0 Volume Right 23 32 0 8 0 8 CSH 301 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95th (m) 4.6 4.7 0.1 0.0 0.3 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A Approach LOS C C Approach LOS C C C U U U				_				_					
Volume Left 20 21 0 8 0 8 Volume Right 23 32 0 8 0 8 CSH 301 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 020 0.01 0.16 Queue Length 95th (m) 4.6 4.7 0.1 0.0 0.3 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 Approach LOS C C C A A Approach LOS C C													
Volume Right 20 318 1004 1700 876 1700 Volume to Capacity 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95h (m) 4.6 4.7 0.1 0.00 0.00 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 Approach Delay (s) 19.3 18.6 0.1 0.3 0.0 0.0							8						
CSH 0.16 0.17 0.00 0.20 0.01 0.16 Queue Length 95th (m) 4.6 4.7 0.1 0.0 0.3 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 Immediate LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 Immediate LOS C C A A						876	1700						
Volume to Capacity 0.16 0.17 0.00 0.20 0.3 0.0 Queue Length 95th (m) 4.6 4.7 0.1 0.0 0.3 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A A Approach Delay (s) 19.3 18.6 0.1 0.3 A Approach LOS C C C A A Detrosech on Summary C C C C C							0.16						
Queue Length Son (m) 4.6 6.7 6.7 6.6 0.6 0.0 Control Delay (s) 19.3 18.6 0.2 0.0 0.6 0.0 Lane LOS C C A A A Approach Delay (s) 19.3 18.6 0.1 0.3 Approach LOS C C C													
Control Delay (s) 19.3 10.3 0.2 0 A A Lane LOS C C A A Approach Delay (s) 19.3 18.6 0.1 0.3 Approach LOS C C													
Lane LOS 19.3 18.6 0.1 0.3 Approach Delay (s) 19.3 18.6 0.1 0.3 Approach LOS C C					0.0								
Approach LoS C C		-											
Approach Los	Approach Delay (s)			0.1		5.0							
Intersection Summary	Approach LOS	U	U	_	_	_			-	0.0	-		
Average Delay 1.6	Intersection Summary			1.6	-	-			-	-			

)3/25/2022	,	4	+	1	5	1	
	*	-					
Novement	WBL	WBR		NBR	SBL	SBT	
ane Configurations	A		47+			44	
Fraffic Volume (veh/h)	3	2	668	4	2	504	
uture Volume (Veh/h)	3	2	668	4	2	504	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	3	2	703	4	2	531	
Pedestrians	10		10			10	
Lane Width (m)	3.6		3.6			3.6	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	1		1			1	
Right turn flare (veh)							
			None			None	
Median type							
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked	994	374			717		
vC, conflicting volume	334	014					
vC1, stage 1 conf vol							
vC2, stage 2 conf vol		374			717		
vCu, unblocked vol	994	6.9			4.2		
tC, single (s)	6.8	0.9			7.4		
tC, 2 stage (s)					2.2		
tF (s)	3.5	3.3			100		
p0 queue free %	99	100			853		
cM capacity (veh/h)	237	614					
Direction. Lane #	WB 1	NB 1	NB2	S8 1	SB 2		
Volume Total	5	469	238	179	354		
Volume Left	3	0	0	2	0		
Volume Right	2	0	4	0	0		
cSH	314	1700	1700	853	1700		
Volume to Capacity	0.02	0.28	0.14	0.00	0.21		
Queue Length 95th (m)	0.4	0.0	0.0	0.1	0.0		
Control Delay (s)	16.6		0.0	0.1	0.0		
Lane LOS	0.0			A			
Approach Delay (s)	16.6			0.0			
Approach LOS	C						
Intersection Summary		30					
Average Delay			0.1		0111	al of Sonvice	A
Intersection Capacity Utili	ization		31.4%		ICU Leve	el of Service	(M).

03/25/2022	٠	→	*	4	-	*	1	1	1	4	ŧ.	~
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Vovement	CDL	4	and the second s		4.			4			414	
ane Configurations	20	2	15	8	2	2	5	598	7	10	452	7
raffic Volume (veh/h)	20	2	15	8	2	2	5	596	7	10	452	7
Future Volume (Veh/h)	20	Stop	10		Stop			Free			Free	
Sign Control		0%			0%			0%			0%	
Grade	0.05	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Peak Hour Factor	0.95	2	16	8	2	2	5	627	7	11	476	7
Hourly flow rate (vph)	21		10	0	10	-		10			10	
Pedestrians		10			3.6			3.6			3.6	
Lane Width (m)		3.6			1.2			1.2			1.2	
Walking Speed (m/s)		1.2			1			1			1	
Percent Blockage		1			1							
Right turn flare (veh)								None			None	
Median type								None				
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked							504			644		
vC, conflicting volume	1199	1200	296	938	1234	650	561			011		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol						_				644		
vCu, unblocked vol	1199	1200	296	938	1234	650	561			4.2		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
IC, 2 stage (s)												
	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
IF (s)	84	99	98	96	99	100	99			99		
p0 queue free %	133	178	689	203	170	405	978			909		
cM capacity (veh/h)					SB 2				1.00	1.0	1.1	
Direction, Lane #	EB 1	WB1	NB 1	SB1		_			-			
Volume Total	39	12	639	249	313 0							
Volume Left	21	8	5	11								
Volume Right	16	2	7	0	75							
cSH	203	214	978	909	1700							
Volume to Capacity	0.19	0.06	0.01	0.01	0.18							
Queue Length 95th (m)	5.5	1.4	0.1	0.3	0.0							
Control Delay (s)	26.9	22.8	0.1	0.5	0.0							
Lane LOS	D	С	A	A								
Approach Delay (s)	26.9	22.8	0.1	0.2								
Approach LOS	D	C									-	
Intersection Summary				1211								-
Average Delay	-		12	6								
Intersection Capacity Utili	zation		48.6%		ICU Leve	of Servi	се			A		

3/25/2022	*		~	1	+	1	•	1	1	5	1	∢.
	-	1.00			wide	1100	NEL	NBT	NBR	SBL	SBT	SBR
lovement	EBL	EBT	EBR	WBL		WBR	TNEX.	47	- HUNS	000	41+	
ane Configurations		4			++		24	552	23	35	841	24
Fraffic Volume (veh/h)	14	0	15	16	0	25	24	552	23	35	841	24
Future Volume (Veh/h)	14	0	15	16	0	25	24	Free	LU	00	Free	
Sign Control		Stop			Stop			0%			0%	-
Grade		0%			0%		0.05	0.95	0.95	0.95	0.95	0.95
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	581	24	37	885	25
Hourly flow rate (vph)	15	0	16	17	0	26	25	10	24	01	10	- 5
Pedestrians		10			10						3.6	
Lane Width (m)		3.6			3.6			3.6			12	
Walking Speed (m/s)		12			1.2			1.2			1	
Percent Blockage		1			1			1				
Right turn flare (veh)											None	
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
px, platoon unblocked	1358	1646	475	1196	1647	322	920			615		
vC, conflicting volume	1000	1010										
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	1358	1646	475	1196	1647	322	920			615		
vCu, unblocked vol	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, single (s)	1.5	0.5	0.5	1.0								
tC, 2 stage (s)		4.0	3.3	3.5	40	3.3	2.2			2.2		
tF (s)	3.5	100	97	87	100	96	97			96		
p0 queue free %	84	100	527	126	90	662	732			953		
cM capacity (veh/h)	95	90						_		-		
Direction, Lane #	EB 1	WB1	NB 1	NB2	\$81	\$82		1	_			
Volume Total	31	43	316	314	480	468						
Volume Left	15	17	25	0	37	0						
Volume Right	16	26	0	24	0							
cSH	164	247	732	1700	953							
Volume to Capacity	0.19	0.17	0.03	0.18								-
Queue Length 95th (m)	5.4	4.9	0.8	0.0								
Control Delay (s)	31.9	22.6	1.2	0.0								
Lane LOS	D	С	A		A							
Approach Delay (s)	31.9	22.6	0.6		0.6	i						
Approach LOS	D										-	
Intersection Summary	1. 2. 2	15.							-	-	-	
Average Delay		100	1.7							8		
Intersection Capacity Utili	zation		58.1%		ICU Leve	el of Servi	ce			8		

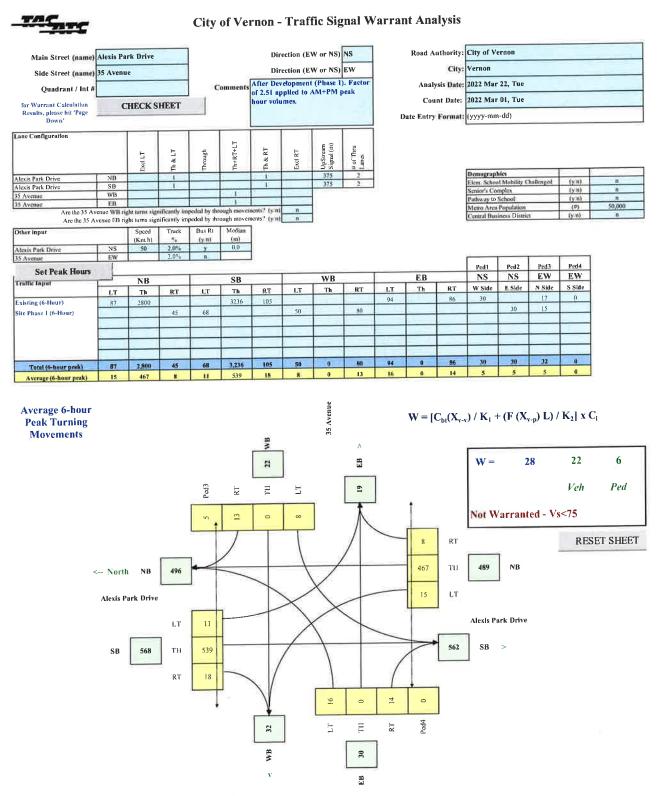
: Alexis Park Drive 3/25/2022							After Developmen: (2025) - Building 1-3
	4	A.	1	1	5	Ļ	
Concerned.	WBL	WBR	NBT	NBR	SBL	SBT	
Avement ane Configurations	Y		41+			44	
	8	2	582	4	2	883	
raffic Volume (veh/h)	8	2	582	4	2	863	
uture Volume (Veh/h)	Stop	-	Free			Free	
Sign Control	0%		0%			0%	
Grade	0.95	0.95	0.95	0.95	0.95	0.95	
Peak Hour Factor	8	2	613	4	2	929	
Hourly flow rate (vph)	10	2	10			10	
Pedestrians	3.6		3.6			3.6	
Lane Width (m)	1.2		1.2			1.2	
Walking Speed (m/s)			1.2			1	
Percent Blockage	1						
Right turn flare (veh)			None			None	
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked					627		
vC, conflicting volume	1104	328			027		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol					007		
vCu, unblocked vol	1104	328			627		
tC, single (s)	6.8	6.9			4.1		
tC. 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	96	100			100		
cM capacity (veh/h)	202	656			943		
Direction, Lane #	WB 1	NB1	NB 2	SB 1	582		
Volume Total	10	409	208	312	619		
Volume Left	6	0	0	2	0		
Volume Right	2	0	4	0	0		
cSH	234	1700	1700	943	1700		
Volume to Capacity	0.04	0.24	0.12	0.00	0.36		
Queue Length 95th (m)	1.1	0.0	0.0	0.1	0.0		
Control Delay (s)	21.1	0.0	0.0	0.1	0.0		
Lane LOS	C			A			
Approach Delay (s)	21.1	0.0		0.0			
Approach LOS	C						
Intersection Summary	20.00			1	1112		
Average Delay			02				
Intersection Capacity Utilia	zation		38.6%		ICU Leve	of Service	A
Analysis Period (min)			15				

)3/25/2022	1	→	>	<	+-	۰.	1	Ť	1	5	ŧ	~
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
lovement	LUL	4			4			4			4Te	
ane Configurations	21	2	12	19	2	12	8	572	11	11	720	13
raffic Volume (veh/h)	21	2	12	19	2	12	8	572	11	11	720	13
ulure Volume (Veh/h)	21	Stop	14		Stop			Free			Free	
Sign Control		0%			0%			0%			0%	_
Grade	0.05	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Peak Hour Factor	0.95	0.95	13	20	2	13	8	602	12	12	758	13
Hourly flow rate (vph)	22	-	15	20	10		1.4.1	10			10	
Pedestrians		10			3.6			3.6			3.6	
_ane Width (m)		3.6			1.2			12			1.2	
Walking Speed (m/s)		1.2			1.2			1			1	
Percent Blockage		1										
Right turn flare (veh)								Nona			None	
Median type								THORNO				
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked						628	906			624		
vC, conflicting volume	1509	1501	468	1061	1564	020	900			021		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol										624		
vCu, unblocked vol	1509	1501	468	1061	1564	628	906			4.1		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)										2.2		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			99		
p0 queue free %	71	98	98	88	98	97	99					
cM capacity (veh/h)	76	116	533	164	106	419	740			945		
	PID 4	-	NB 1	581	\$8.2	-				1.1		
Direction, Lane #	EB 1	WB 1 35	622	391	517							
Volume Total	37	12.23	8	12	0							
Volume Left	22	20	12	0	138							
Volume Right	13	13	740	945	1700							
cSH	111	203	1.216.00	0.01	0.30							
Volume to Capacity	0.33	0.17	0.01	0.01	0.0							
Queue Length 95th (m)	10.5	4.9	0.3	0.4	0.0							
Control Delay (s)	52.7	28.4	0.3		0.0							
Lane LOS	F	D	A	A 0.2								
Approach Delay (s)	52.7	26.4	0.3	0.2								
Approach LOS	F	D					-	-		-	-	-
Intersection Summary		-			in co	2 - 1		-				-
Average Delay			2.0			L . Card			5	A		
Intersection Capacity Utiliz	zation		50.0%		ICU Leve	I of Servi	ce			R .C		

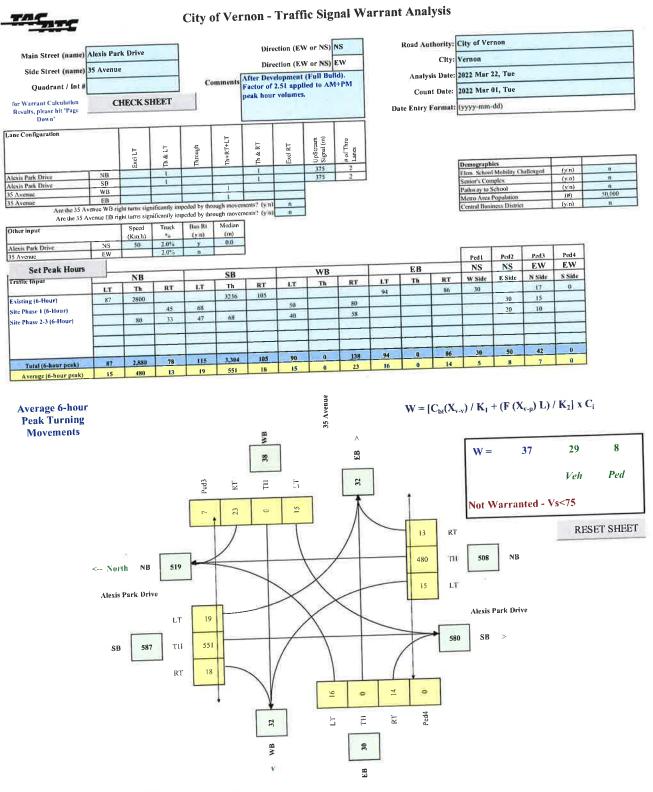
lovement		-	~	-	-	- - -	٠.	T		× .	+	-
	EBL	EBT	EBR	WEL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
ane Configurations	EDC	4	COM	AAPPE	44	WINN'S	110/br	नी है।	1260.5	-	41+	0.01
	27	0	24	20	0	30	6	695	8	11	532	
raffic Volume (veh/h)	27	0	24	20	0	30	6	695	8	11	532	
uture Volume (Veh/h) Sign Control	21	Stop	24	20	Stop	50	0	Free	0		Free	
Srade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
lourly flow rate (vph)	28	0.55	25	21	0.35	32	6	732	8	12	560	0.0
Pedestrians	20	10	25	21	10	52	U	10	v	14	10	
		3.6			3.6			3.6			3.6	
ane Width (m)		3.0 1.2			1.2			1.2			1.2	
Valking Speed (m/s) Percent Blockage		1.2			1.2			1.2			1.2	
		-			-							
Right lum flare (veh)								None			None	
Viedian type								NOTIC			NONC	
Vledian storage veh)												
Upstream signal (m)												
pX, platoon unblocked	1010	1360	304	1097	1361	390	579			750		
C, conflicting volume	1018	1300	304	1097	1301	390	3/3			100		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol	4040	1360	304	1097	1361	390	579			750		
vCu, unblocked vol	1018	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tC, single (s)	7.5	0.0	0.9	1.5	0.5	0.9	4.2			4.2		
tC, 2 stage (s)	2.5	4.0	3.3	3.5	4.0	3.3	2.2			22		
tF (s)	3.5		3.3 96	3.5	100	95	99			99		
p0 queue free %	84	100		154	142	599	962			829		
cM capacity (veh/h)	173	142	680				902		_	023	_	-
Direction, Lane #	EB 1	WB 1	NB 1	NB2	SB 1	SB 2	-	-			1000	
Volume Total	53	53	372	374	292	289						
Volume Left	28	21	8	0	12	0						
Volume Right	25	32	0	8	0	9						
cSH	267	280	962	1700	629	1700						
Volume to Capacity	0.20	0.19	0.01	0.22	0.01	0,17						
Queue Length 95th (m)	5.8	5.5	0.2	0.0	0.4	0,0						
Control Delay (s)	21.8	20.9	0.2	0.0	0.5	0.0						
Lane LOS	C	C	A		A							
Approach Delay (s)	21.8	20.9	0.1		0,3							
Approach LOS	С	С										
Intersection Summary	25-11	10.00	ENV.				100	Sec. 20	121			
Average Delay			1.7									
Intersection Capacity Utiliza	tion		37.6%	ŀ	CU Level	of Service			A			
Analysis Period (min)			15									

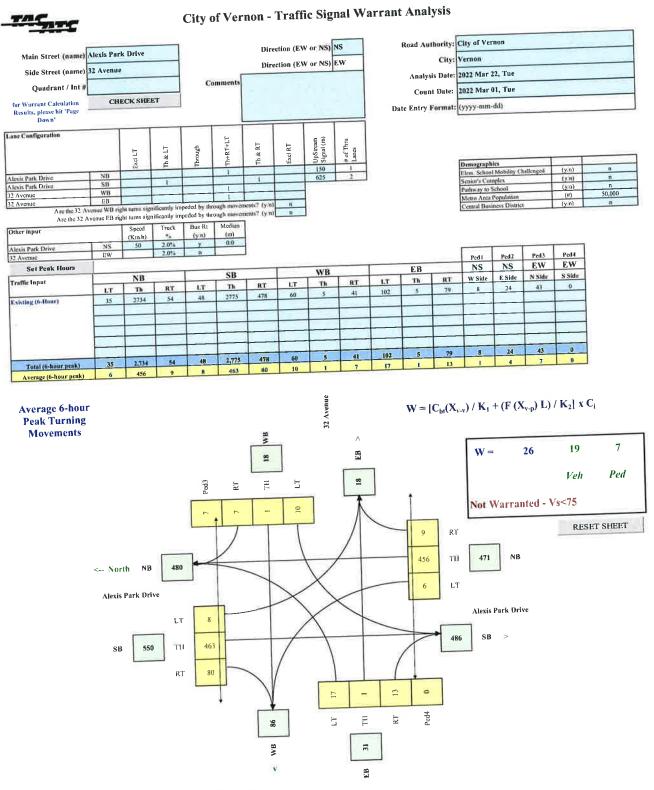
2: Alexis Park Drive 03/25/2022	5 at 30 M	venue					AM Peak Ho After Development (2035) - Building 1
	*	*	1	1	1	Ļ	
Aovement	WBL	WBR	NBT	NBR	SBL	SBT	
ane Configurations	¥		41			47	
Traffic Volume (veh/h)	3	2	729	5	2	551	
Future Volume (Veh/h)	3	2	729	5	2	551	
Sian Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Hourly flow rate (vph)	3	2	767	5	2	580	
Pedestrians	10		10			10	
Lane Width (m)	3.6		3.6			3.6	
Walking Speed (m/s)	1.2		1.2			1.2	
Percent Blockage	1		1			1	
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	1084	406			782		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1084	406			782		
(C, single (s)	6.8	6.9			4.2		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	99	100			100		
cM capacity (veh/h)	208	584			806		
			100	SB 1	SB 2		
Direction, Lane #	WB1	NB 1	NB-2 261	195	387		
Volume Total	5	511		195	387		
Volume Left	3	0	0		0		
Volume Right	2	0	5	0 808	1700		
cSH	280	1700	1700	0.00	0.23		
Volume to Capacity	0.02	0.30	0.15	0.00	0.23		
Queue Length 95th (m)	0.4	0.0	0.0	0.1	0.0		and the second second second
Control Delay (s)	18.1	0.0	0.0	0.1 A	0.0		
Lane LOS	C	0.0		A 0.0			
Approach Delay (s) Approach LOS	18.1 C	0.0		Ų.Ū			
ALC: NOTE OF ALC:	U		_	_			
Intersection Summary				14.128	714		
Average Delay			0.1			10 1	
Intersection Capacity Utiliz	ation		33.2%	10	CU Level	of Service	A
Analysis Period (min)			15				

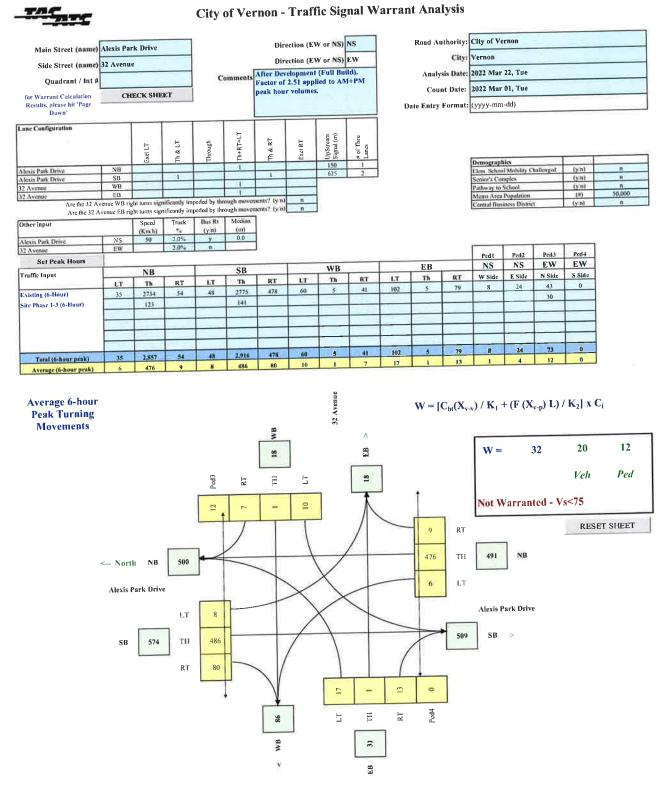
	۶	-	*	1	-	۰.	1	t	1	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
ane Configurations	L.C.L	4	CONT		4		1104	4			41+	
Traffic Volume (veh/h)	21	2	17	9	2	2	6	653	8	11	493	78
Future Volume (Veh/h)	21	2	17	9	2	2	6	653	8	11	493	78
Sign Control		Stop			Stop	-	_	Free	-		Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	22	2	18	9	2	2	6	687	8	12	519	82
Pedestrians		10			10			10			10	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1310	1311	320	1026	1348	711	611			705		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1310	1311	320	1026	1348	711	611			705		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.2			4.2		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	60	99	97	95	99	99	99			99		
cM capacity (veh/h)	110	152	664	174	144	369	936			862		
Direction, Lane #	EB 1	WB1	NB 1	581	S8 2		100		200		1.12	
Volume Total	42	13	701	272	342							
Volume Left	22	9	6	12	0							
Volume Right	18	2	8	0	82							
cSH	175	183	936	862	1700							
Volume to Capacity	0.24	0.07	0.01	0.01	0.20							
Queue Length 95th (m)	7.2	1.8	0.2	0.3	0.0							
Control Delay (s)	32.0	26.2	0.2	0.6	0.0							
Lane LOS	D	D	Α	A								
Approach Delay (s)	32.0	26.2	0.2	0.2								
Approach LOS	D	D										
Intersection Summary	100	1.72	- 53	1		11111				112		
Average Delay			1.4			100						
Intersection Capacity Utilization	ation		52.5%	IC	CU Level	of Service			A			
Analysis Period (min)			15									


			_	_	_							
	× .	-	\mathbf{F}	-	+	•	٩.	1	1	1	+	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SB
ane Configurations		4			4			4%			414	
Traffic Volume (veh/h)	16	0	17	16	Ð	25	26	604	23	35	921	2
Future Volume (Veh/h)	16	0	17	16	0	25	26	604	23	35	921	2
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.9
Hourly flow rate (vph)	17	0	18	17	0	26	27	636	24	37	969	2
Pedestrians		10			10			10			10	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1474	1790	518	1298	1792	350	1006			670		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1474	1790	518	1298	1792	350	1006			670		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
IC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	78	100	96	84	100	96	96			96		
cM capacity (veh/h)	77	73	494	105	72	635	679			908		
Direction, Lane #	EB 1	WB1	NB1	NB/2	SB 1	\$8.2				- 17-		
Volume Total	35	43	345	342	522	512						
Volume Left	17	17	27	0	37	0						
Volume Right	18	26	0	24	0	27						
cSH	136	211	679	1700	908	1700						
Volume to Capacity	0.26	0.20	0.04	0.20	0.04	0.30						
Queue Length 95th (m)	7.7	5.9	1.0	0.0	1.0	0.0						
Control Delay (s)	40.4	26.3	1.3	0.0	1.1	0.0						
Lane LOS	E	D	A		A							
Approach Delay (s)	40.4	26.3	07		0.6							
Approach LOS	E	D										
Intersection Summary	1000		-	-		-		-	1		1	
Average Delay	1	-	2.0			-					-	
					ICU Level of Service				12.000.21			
Intersection Capacity Utiliza	lion		61.8%		CU Level	of Service			В			

Wole WBR NBT NBR SSL SST ane Configurations Y 1 41 41 Traffic Volume (veh/h) 9 2 634 5 2 964 Sign Control Stop Free Free Free 644 Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.35 0.95 0.95 0.95 0.95 Lene Width (m) 3.6 3.6 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 1.2 Percent Blockage 1 1 1 1 Right um flare (veh) VC, conflicting volume 1201 356 682 vC, stoget 1 conf vol vC, conflicting volume 1201 356 682 vC, staget 2 conf vol vC, staget 5 3.3 2.2 2 VC, staget 1 conf vol velow 100 100 100 cC, stagle (s) 1 145		4	4	t	1	5	1	
are Configurations Y 11 11 11 Traffic Volume (veh/h) 9 2 634 5 2 964 Sign Control Stop Free Free Free Grade 0% 0% 0% 0% Peak Hour Factor 0.35 0.95 0.95 0.95 0.95 Pedestrians 10 10 10 10 Lare Width (m) 3.6 3.6 3.6 Walking Speed (nt/s) 1.2 1.2 1.2 Percent Blockage 1 1 1 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) pX platoon unblocked vC. conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol	Unversent	WBL	WBR	NBT	NBR	SBL	SBT	
Traffic Volume (veh/h) 9 2 634 5 2 964 Sign Control Stop Free Free Free Sign Control Stop 0%		¥		*t			44	
Name Volume (Veh/h) 9 2 634 5 2 964 Sign Control Stop Free Free 0%			2		5	2	964	
Under Volume (Veltin) Stop Free Free Grade 0% 0% 0% Grade 0% 0% 0% Peak Hour Factor 0.95 0.95 0.95 0.95 Outry flow rate (vph) 9 2 667 5 2 1015 Pedestrians 10 10 10 10 10 10 Lane Width (m) 3.6 3.6 3.6 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 1.2 1.2 Percent Blockage 1 1 1 1 1 VC, conflicting volume 1201 356 682				634	5	2	964	
Big Hourison O% O% O% Frade 0% 0% 0% 0% Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 Houry flow rate (vph) 9 2 667 5 2 1015 Pedestrians 10 10 10 10 10 Lare Width (m) 3.6 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 1.2 Percent Blockage 1 1 1 1 Right turn flare (veh) More None None Median storage veh) Upstream signal (m) pX platoon unblocked VC2, stage 2 conf vol vC1, stage 1 conf vol vC2, stage 2 conf vol - - vC2, stage 2 conf vol - - - vC2, stage				Free			Free	
Data Op5 0.95							0%	
Percent necks Point Point Point Point Percent Blockage 1 10 10 10 Lane Width (m) 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 1 1 1 Right run flare (veh) None None None Median storage veh) Upstream signal (m) VZ, taige 1 conf vol VZ, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VZ, taige 1 conf vol VZ, taige 1 conf vol VC2, stage (s) E E VA VA UC 2 stage (s) E Z 2.2 Up queue free % 95 100 100 Control Volume Total 11 445 227 340 677 Volume Left 9 0 0			0.95		0.95	0.95	0.95	
Non-reserve None 10 Approach Delay (s) 10 10 totame Width (m) 3.6 3.6 Malking Speed (m/s) 1.2 1.2 Percent Blockage 1 1 Right tum fare (veh) 1 1 Median storage veh) Upstream signal (m) pX, platoon unblocked vC0, conflicting volume 1201 356 682 vC0, stage 1 conf vol vC2, stage 2 conf vol					5	2	1015	
Constraints 1 3.6 3.6 3.6 Walking Speed (m/s) 1.2 1.2 1.2 Percent Blockage 1 1 1 Right um flare (wh) 1.2 1.2 1.2 Median type None None None Median storage veh) Upsteam signal (m) pX, platon unblocked - vC, conflicting volume 1201 356 682 - vC2, stage 2 conf vol - - - - vC2, stage 2 conf vol - - - - vC2, stage 2 conf vol - - - - vC2, stage 2 conf vol - - - - - vC2, stage 2 conf vol - - - - - - vC2, stage 2 conf vol -							10	
Late Hull (H) L2 1.2 1.2 Percent Blockage 1 1 1 Right turn flare (veh) None None Median storage veh) Upstream signal (m) X XC, talston unblocked VC, conflicting volume 1201 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 3 conf vol VC2, stage 4 conf vol VC2, stage 4 conf vol VC2, stage 4 conf vol VC2, stage 4 conf vol VC2, stage 4 conf vol VC2, stage 5 conf vol VC2, stage 4 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 5 conf vol VC2, stage 6 (s) TT TT TT UC as stage (s) TT 630 8399 Direction, Lan							3.6	
Walking Speed (IVS) 1.2 1.2 1.2 Regnet ISockage 1 1 1 Right turn flare (veh) None None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, confiction yolume 1201 356 682 vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 3 1 1 Upstream signal (m) pX platoon unblocked vC2, stage 2 conf vol vC2, stage 3 682 VC2, stage 4 (s) 1 14 356 682 1 1 Up queue free % 95 100 100 22 100 100 cdmet as 11 445 227 340 677 Volume 161t 9 0 2 0 0 0 2 0 5 0 0 cSH 20 100 2 0 0 0 0 0 0 0 <							1.2	
Percent Dockage None None Median storage veh) Upstream signal (m) pX, platon unblocked 562 vC, conflicting volume 1201 vC, stage 2 conf vol 682 vCL, stage 1 conf vol 1201 vC, stage 2 conf vol 682 vCL, stage 5 69 uf (s) 3.5 3.5 3.3 2.2 stage (s) 100 tf (s) 3.5 9.0 queue free % 95 100 100 cM capacity (veh/h) 174 630 899 Direction Lame WB 1 VB 1 VB 1 VB 2 SB 1 SS 0 0 cSH 20 0.00 0.01 Volume loft 9 0.00 0.01 Control Delay (s) 24.0 0.00 0.1 0.01 0.01 0.02 0.01 0.03 0.040 Queue tength 95th (m) 1.4 0.00								
Median type None None Median storage veh) Upstream signal (m) pX, platoon unblocked vC, conflicting volume 1201 356 682 vC2, stage 2 conf vol vC, conflicting volume 1201 356 682 vC2, stage 2 conf vol vC2, unblocked vol 1201 356 682 vC3, stage 2 conf vol vC4, unblocked vol 1201 356 682 tC, single (s) 6.8 6.9 4.1 100 100 tC, conflecting veh/m 174 630 899 100 100 Direction, Lane # WB 1 NB 1 NB 2 SB 1 SB 2 Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Right 2 0 5 0 0 cycle chift 9 0 0 2 0 Volume Left 9 0 0.0 0.40								
Weatina storage veh) Upstream signal (m) yck, piatoon unblocked vc. confiction yolume 1201 356 682 vC2, stage 1 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vC2, unblocked vol 1201 356 682 vC2, stage 2 conf vol vc2, stage 2 conf vol vc2, stage 2 conf vol vC2, unblocked vol 1201 356 682 Upstream signal (m) 174 630 899 Direction Linne WB NB 1 NB 2 SB 1 Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Right 2 0 5 0 0 CSH 200 1700 1700 899 1700 Volume Loft 9 0 2 0 0 Volume Loft 9 0 0 2 0 Volume Loft 9 0.0 0.0				None			None	
Upstream signal (m) pX, platoon unblocked vC, conflicting volume vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1201 356 682 (C, single (s) 6.8 6.9 4.1 (C, single (s) 6.8 6.9 4.1 (C, single (s) 3.5 3.3 2.2 pd queue free % 95 100 100 cM capacity (veh/h) 174 630 899 Direction time WB NB1 NB2 SB1 SB2 Volume Total 11 445 227 340 677 Volume Total 11 445 20 5 0 0 cSH 20 1700 1700 899 1700 Volume Right 2 0 5 0 0 cSH 200 1700 1700 89 1700 Volume Loft 9 0.0 0.2 0 Volume Loft 9 0.0 0.0 0.40 Queue Length 95h (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 0.0 Approach LOS C 4.				NUTE			Tione	
pX plation unblocked vC, conflicting volume 1201 356 682 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, unblocked vol 1201 356 682 vC2, stage 2 conf vol vC2, unblocked vol 1201 356 682 tt(C, single (s) 6.8 6.9 4.1 tC, single (s) 6.8 6.9 4.1 tt(S, stage 2 conf vol vc2, unblocked vol 100 conf <								
VC. conflicting volume 1201 356 682 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 4 conf VC2, stage 4 conf VC, single (s) 6.8 6.9 4.1 VC2, stage (s) VC2, stage (s) UF (s) 3.5 3.3 2.2 p0 queue free % 95 100 100 CM capacity (veh/h) 174 630 899 1000 conf Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Right 2 0 5 0 0 vSH 200 1700 1700 899 1700 Volume Right 2 0 5 0 0 vSH 200 1700 1700 899 1700 Volume Right 2 0 5 0 0 0 0 0 0 0								
Vic. contracting volume Vic. is tage 1 contrivul Vic. single (s) Vic. unblocked vol 1201 356 682 vic. single (s) 6.8 6.9 4.1 (C, single (s) 6.8 6.9 4.1 tC, single (s) 3.5 3.3 2.2 (C, single (s) (C, single (s) 100 control (s) (C, single (s)		1001	250			692		
VC2, stage 2 conf vol VCU, unblocked vol 1201 356 682 VCL, unblocked vol 1201 356 682 1 tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) 1 1 100 c g0 queue free % 95 100 100 c cM capacity (veh/h) 174 630 899 1 Direction, Lane # WB 1 NB 2 SB 1 SB 2 Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Left 9 0 0 2 0 Volume Log 0.01 100 c 10 c Volume Log 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.40 Queue Length 95th (m) 1.4 0.0 0.0 1.00 Lane LOS C A Approach LOS		1201	300			002		
vCu, unblocked vol 1201 356 682 IC, single (s) 6.8 6.9 4.1 IC, 2 stage (s)								
With indicated vol 1201 0.00 4.1 tC, single (s) 6.8 6.9 4.1 tC, 2 stage (s) 1 100 2.2 tF (s) 3.5 3.3 2.2 p0 queue free % 95 100 100 cM capacity (veh/h) 174 630 899 Direction, Lane WB1 NB1 NB2 SB1 SB2 Volume Total 11 445 227 340 677 Volume Total 11 445 20 5 0 volume Left 9 0 0 2 0 Volume Log 2 0 5 0 0 volume to Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 0.0 Lane LOS A Approach LOS C A A						602		
http://spie/spie/spie/spie/spie/spie/spie/spi	vCu, unblocked vol							
IF (s) 3.5 3.3 2.2 p0 queue free % 95 100 100 cK capacity (veh/h) 174 680 899 Direction: Imms # WB 1 NB 2 SB 1 SB 2 Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Right 2 0 5 0 0 cSH 200 1700 700 899 1700 Volume to Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 4 Approach LoS C A Approach LOS C A	tC, single (s)	6.8	6.9			4.1		
Image Image <th< td=""><td>tC, 2 stage (s)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	tC, 2 stage (s)							
Direction: Lans H WB 1 NB 2 SB 1 SB 2 Volume Total 11 445 227 340 677 Volume Total 11 445 227 340 677 Volume Right 2 0 5 0 0 vSH 200 1700 1700 899 1700 Volume Left 9 0 2 0 0 vSH 200 1700 1700 899 1700 Volume Logacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.1 0.0 Lane LOS C A Approach LOS C .4 .0 .0 .0 .0	tF (s)							
Conception Concept	p0 queue free %							
Diffection Ho Ho Ho Form Volume Total 11 445 227 340 677 Volume Right 2 0 5 0 0 cSH 200 1700 1700 899 1700 Volume Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 0.1 0.0 Approach LOS C A Approach LOS C A	cM capacity (veh/h)	174	630			899		
Volume Ioa I <thi< th=""> I <thi<< td=""><td>Direction, Lane #</td><td>W8.1</td><td>NB 1</td><td>NB 2</td><td>SB 1</td><td>SB 2</td><td>100</td><td></td></thi<<></thi<>	Direction, Lane #	W8.1	NB 1	NB 2	SB 1	SB 2	100	
Volume Left 9 0 0 2 0 Volume Right 2 0 5 0 0 cSH 200 1700 899 1700 Volume to Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 0.1 0.0 <td></td> <td>11</td> <td>445</td> <td>227</td> <td>340</td> <td>677</td> <td></td> <td></td>		11	445	227	340	677		
Volume Right 2 0 5 0 0 cSH 200 1700 1700 899 1700 Volume to Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 0.1 0.0 Lane LOS C A Approach Delay (s) 24.0 0.0 0.0	Volume Left	9	0	0	2			
200 1700 1700 899 1700 Volume to Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.1 0.0 Lane LOS A Approach LOS C A A A A		2	0	5				
Volume to Capacity 0.05 0.26 0.13 0.00 0.40 Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.0 0.1 0.0 Lane LOS C A Approach Delay (s) 24.0 0.0 0.0 Approach LOS C A		200	1700	1700	899			
Queue Length 95th (m) 1.4 0.0 0.0 0.1 0.0 Control Delay (s) 24.0 0.0 0.1 0.0 Lane LOS A Approach LOS C A A A A A		0.05	0.26	0.13	0.00			
Control Delay (s) 24.0 0.0 0.1 0.0 Lane LOS C A Approach Delay (s) 24.0 0.0 0.0 Approach Delay (s) C A		1.4	0.0	0.0	0.1			
Lane LOS C A Approach Delay (s) 24.0 0.0 0.0 Approach LOS C		24.0	0.0	0.0	0.1	0.0		
Approach Delay (s) 24.0 0.0 0.0 Approach LOS C C		C			A			
Approach LOS C			0.0		0.0			
alarsellan Sumpan		C						
	Intersection Summary	-		11-11	1.2			
	Average Delay Intersection Capacity Utiliz	ation		40.9%		CU Leve	l of Service	A

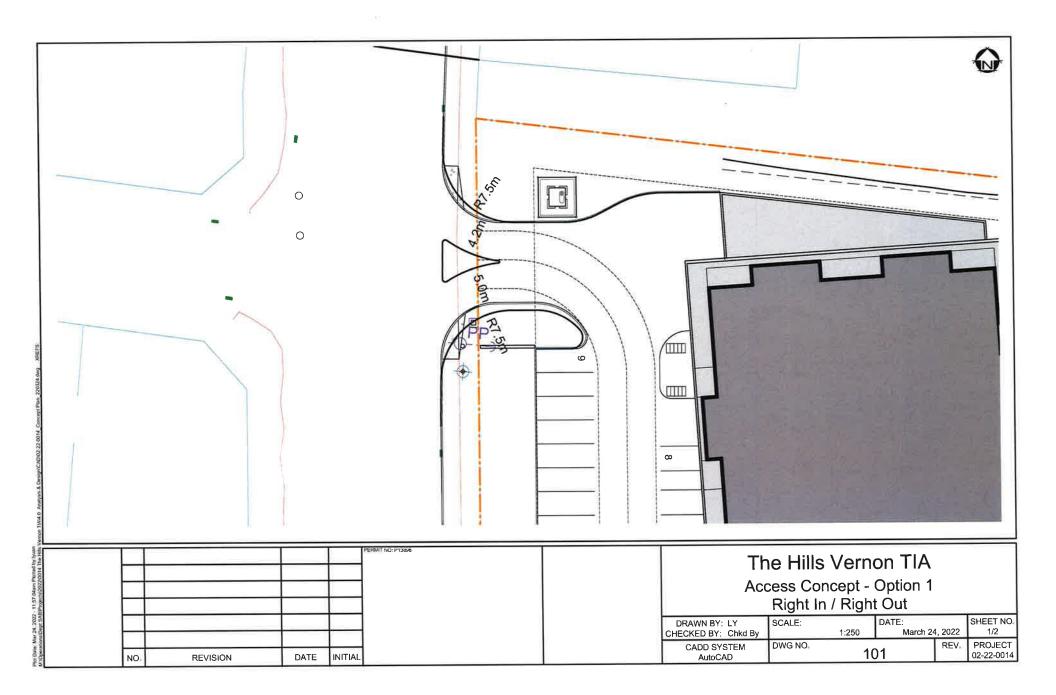

Kovement EBL EBL EBL EBL WSL WS		۶	-	*	<	+	۰.	1	1	1	5	1	~
Internation Control Provide Provid Provide Provide	(and a second seco	FRI	FBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL		SBR
all Contingenerations 23 2 14 20 2 14 9 623 12 12 788 14 uture Volume (Vel/h) 23 2 14 20 2 14 9 623 12 12 788 14 Sign Control Stop Stop Stop Free Free Free Free Sign Control 0.95 <td< td=""><td></td><td>LUL</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td></td<>		LUL							4				
Tradit Outline (Verhit) 23 2 14 20 2 14 9 623 12 12 786 14 Sign Control Stop Stop Stop Free Fre Free Free F		23		14	20		14	9	623	12	12		
Child Vettini Los Los Stop Free Free Sing Control Stop 0%							14	9	623	12	12		144
Organization Organization<		20	-			Stop			Free				
Base Constraint Constant Constraint Constraint									0%				
Heak Rubit Peckal 0.03 <td></td> <td>0.05</td> <td></td> <td>0.95</td> <td>0.95</td> <td></td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td>0.95</td> <td></td>		0.05		0.95	0.95		0.95	0.95	0.95	0.95	0.95	0.95	
Nonversite (vini) Lift Lift <thlift< th=""> Lift Lift<td></td><td></td><td></td><td></td><td></td><td></td><td>15</td><td>9</td><td>656</td><td>13</td><td>13</td><td>829</td><td>15</td></thlift<>							15	9	656	13	13	829	15
Constraints 3.6 <th< td=""><td></td><td>24</td><td></td><td>10</td><td></td><td></td><td></td><td></td><td>10</td><td></td><td></td><td>10</td><td></td></th<>		24		10					10			10	
Laife Wold (III) 12 12 12 12 12 12 Percent Blockage 1 1 1 1 1 1 Right fum flare (veh) Median storage veh) Upstream signal (m) pX, pistoon unblocked vC, conflicting volume 1648 1638 510 1157 1708 682 991 679 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 5 conf vol vC2, stage 5 conf vol vC2, stage 5 conf vol vC2, stage 6 (s) IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.2 p0 queue free % 59 98 97 865 98 96 99 99 p0 queue free % 59 995 500 137 86 385 688 901 Desction Lane # EB1 WB1 NB1 281 SB2 Volume Left 24 21 9 13 0 Volume Loft 24 21 9 13 0 Volume Loft 24 21 0.01 0.033 Queue Length 95th (m) 155 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 Lane LOS F D A A Approach LoS F D						3.6			3.6				
Warking Speed (nvs) 1 1 1 1 1 Right turn flare (veh) 1 1 1 1 1 1 Right turn flare (veh) None None None None None Wedian strage veh) Upstream signal (m) X/, biddon unblocked VC, conflicting volume 1648 1638 510 1157 1708 682 991 679 VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol 655 6.9 4.1 4.1 (C, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 9.1 679 (C, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 9.1 4.1 (C, single (s) 7.5 9.9 9.8 97 85 98 96 99 99 90 6M caascity (veh/h) 59 95 500 137 86 385 688 901 50 Volume tor 14 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.2</td> <td></td> <td></td> <td>12</td> <td></td>									1.2			12	
Percent Bookage None None Median type None None Median storage veh) Upsteam signal (m) PX, platoon unblocked VC, onflicting volume 1648 1638 510 1157 1708 682 991 679 VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage (s) 679 100 679 IC, single (s) 7.5 6.5 6.9 4.1 4.1 4.1 IC, single (s) 7.5 6.5 6.9 4.1 4.1 IC, single (s) 7.5 6.5 6.9 4.1 4.1 IC, single (s) 7.5 6.5 6.9 99 99 99 p0 queue free % 59 98 97 85 98 96 99 99 99 cM capacity (veh/h) 59 95 500 137 86 385 688 901 100 10.21 10.21 0.21 0.21 0.21 0.21 100									1			1	
Median type None													
Median skorage veh) Upstream signal (m) Upstream signal (m) X XC, platoou nublocked 1648 1638 510 1157 1708 682 991 679 VC1, stage 1 cont vol VC2, stage 2 cont vol 679 VC2, stage 2 cont vol VC2, stage 2 cont vol <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>None</td> <td></td> <td></td> <td>None</td> <td></td>									None			None	
Upstream signal (m) pX, platoon unblocked vC, conflicting volume 1648 1638 510 1157 1708 682 991 679 vC1, stage 1 conf vol vC2, stage 2 conf vol vC3, stage 2 conf vol vC4, stage													
pX, platoon unblocked VC, conflicting volume VC1, stage 1 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage 2 conf vol VC2, stage (s) IF (s) 0 queue free % 59 98 97 85 98 96 99 99 90 queue free % 59 995 500 137 86 385 688 901 Direction. Lane # EB 1 WE1 NB1 SB1 SB2 Volume Left 24 21 9 13 0 Volume Left 24 21 9 13 0 Volume Left 24 22 1 9 13 0 Volume Left 15 15 13 0 152 cSH 89 177 688 901 1770 Volume Logacity 0 46 0.21 0.01 0.01 0.33 Queue Length 95th (m) 155 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.2 Approach LOS F D 4000 Control Delay (s) 76.0 30.9 0.4 0.2 Approach LOS F D													
VC. conflicting volume 1648 1638 510 1157 1708 682 991 679 VC1, stage 1 conf vol VC2, stage 2 conf vol <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Vic, contribuing volume Total Total <thtotal< th=""> <thtotal< th=""> Total<</thtotal<></thtotal<>		4040	4000	E10	1157	1709	682	991			679		
vC2, stage 2 conf vol vCu, unblocked vol (C, single (s) IF (s) 90 queue length 95th (m) 155 6.3 0.3 0.4 0.0 Volume LOS Volume LOS F D Approach LOS F D Volume LOS F D Volume LOS F D Volume LOS F D Volume LOS F D		1648	1030	510	1107	1700	002	001					
VCU, unblocked vol 1648 1638 510 1157 1708 682 991 679 1C, single (s) 7.5 6.5 6.9 7.5 6.5 6.9 4.1 4.1 1C, 2 stage (s) 3.3 2.2 2.2 p0 queue free % 59 98 97 85 98 99 99 99 Ck capacity (veh/h) 59 55 500 137 86 385 688 901 Direction, Lane # EB1 WB1 NB1 SB1 SB2													
Vicu, indicate voi Ibis Ibis <thibis< th=""> <thibis< th=""> Ibis</thibis<></thibis<>		4040	4000	540	1157	1709	682	991			679		
HC, single (s) 7.5 6.5 0.5 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0											4.1		
IF (s) 3.5 4.0 3.3 3.5 4.0 5.3 2.2 2.2 p0 queue free % 59 98 97 85 98 96 99 99 cM capacity (ve/h) 59 95 500 137 86 98 96 99 99 Direction, Lane # EB1 WB1 SB1 SB2 Volume 10 Volume Total 41 38 678 428 566 Volume Right 15 15 13 0 152 CSH B9 177 688 901 1700 Volume to Capacity 0.46 0.21 0.01 0.033 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 100 10.33 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 10.0 10.33 10.0 10.0 10.33 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 10.0 10.33 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		7.5	6.5	6.9	15	0.5	0.5						
IF (5) 3.3 4.0 5.3 6.3 7.4 <t< td=""><td></td><td></td><td></td><td></td><td>2.5</td><td>4.0</td><td>33</td><td>22</td><td></td><td></td><td>22</td><td></td><td></td></t<>					2.5	4.0	33	22			22		
pd queate three % 59 59 50 57 50 55 50 58 59 68 901 Direction. Lane # EB 1 WB 1 NB 1 58 1 58 2 Volume Total 41 38 678 428 566 Volume Right 55 15 13 0 152 cSH B9 177 668 901 1700 Volume to Capacity 0.46 0.21 0.01 0.01 0.33 Queue Length 95th (m) 155 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach LOS F D											99		
CM capacity (ve/vh) 59 95 500 107 00 505 005 Direction, Lane # EB1 WB1 NB1 SB1 SB2 Volume Total 41 38 678 428 566 Volume Right 15 15 13 0 152 Volume Right 15 15 13 0 152 Volume Capacity 0.48 0.21 0.01 0.33 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 Lane LOS F D A A A Approach LOS F D A A													
Volume Total 41 38 678 428 566 Volume Right 15 15 13 0 Volume Right 15 15 13 0 Volume Right 15 15 13 0 Volume Capacity 0.46 0.21 0.01 0.01 0.33 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach LOS F D Approach LOS F D 4.2 4.2 4.2 4.2	cM capacity (veh/h)	59	95	500		80	365	000	_	_	001	_	_
Volume Total 41 38 678 428 566 Volume Left 24 21 9 13 0 Volume Right 15 15 13 0 152 cSH B9 177 688 901 1700 Volume to Capacity 0.46 0.21 0.01 0.01 0.33 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2	Direction, Lane #	EB.1	WB 1	NB 1	SB 1						-		
Volume Left 24 1 5 15 16 152 volume Right 15 15 13 0 152 volume Right 15 15 13 0 152 volume to Capacity 0.46 0.21 0.01 0.033 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2	Volume Total	41											
Volume Rgin 15 13 177 688 901 1700 Volume to Capacity 0.46 0.21 0.01 0.01 0.33 Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2	Volume Left	24											
Cont Cost Cost <thcost< th=""> Cost Cost <thc< td=""><td>Volume Right</td><td>15</td><td>15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thcost<>	Volume Right	15	15										
Volume to Calability 0.50 0.4 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2 Approach Delay (s) 76.0 30.9 0.4 0.2 Approach Delay (s) F D	cSH	89	177	668								-	
Queue Length 95th (m) 15.5 6.3 0.3 0.4 0.0 Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2 Approach LOS F D A A	Volume to Capacity	0.46	0.21	0.01									
Control Delay (s) 76.0 30.9 0.4 0.4 0.0 Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2 Approach LOS F D A 0.2		15.5	6.3	0.3									
Lane LOS F D A A Approach Delay (s) 76.0 30.9 0.4 0.2 Approach LOS F D		76.0	30.9	0.4	0.4	0.0							
Approach Delay (s) 76.0 30.9 0.4 0.2 Approach LOS F D		F	D	A	A								
Approach LOS F D		76.0	30.9	0.4	0.2								
plersection Summary		F	D										
	Intersection Summary	122	- 11							122	5.0		_
	Intersection Capacity Utilization	- Car		53.6%		ICU Leve	of Sonuc	e		A			

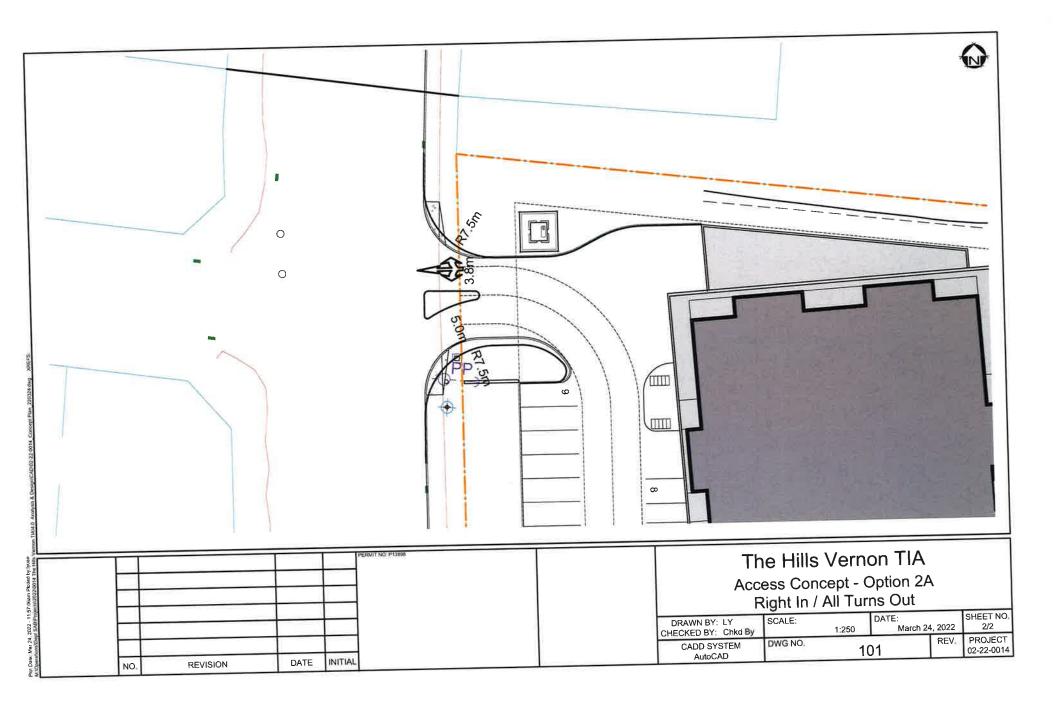

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Cauada

Traffic Signal Warrant Spreadsheet - v3H $\,$ © 2007 Transportation Association of Canada




Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

APPENDIX C

Access Concepts

9.14 RH3 : High-Rise Apartment Residential

9.14.1 Purpose

The purpose is to provide a **zone** for high **density** apartments on urban services.

9.14.2 Primary Uses

- apartment housing
- care centres, major
- group home, major
- seniors assisted housing
- seniors housing
- seniors supportive housing .
- stacked row housing .

9.14.3 Secondary Uses

- health services
- home based businesses, minor
- hotel/motel accommodation within a multiple residential unit
- personal services .
- real estate sales centres (in apartment and stacked row housing only) •
- retail, convenience .
- seniors residential care .

9.14.4 Subdivision Regulations

- Minimum lot width is 30.0m.
- Minimum lot area is 1700m², or 10,000m² if not serviced by a community sewer system.

9.14.5 Development Regulations

- With a housing agreement pursuant to Section 4.9, the maximum density shall be 170.0 units per gross hectare (69 units/gross acre).
- Where parking spaces are provided completely beneath habitable space of a primary building or beneath useable common amenity areas, providing that in all cases the parking spaces are screened from view, the maximum density shall be 195.0 units per gross hectare (79 units/gross acre). Where all the required parking is not accommodated completely beneath the habitable space of a primary building or useable common amenity areas, the additional density permitted shall be determined through multiplying the additional 35.0 units per gross hectare (14 units/gross acre) by the percentage of parking proposed to be provided beneath habitable space of a primary building or useable common amenity areas.
- Service and retail uses are restricted to the first storey.
- Maximum site coverage is 70% and together with all buildings, driveways, parking areas and impermeable surfaces shall not exceed 90%.
- Maximum height is the lesser of 55.0m or 16.0 storeys, except it is 4.5m for secondary buildings and secondary structures.
- Minimum front yard is 6.0m.
- Minimum side yard is 4.5m, except it is 6.0m from a flanking street. The minimum side yard is 0.0m for fee simple stacked row housing.
- Minimum rear yard is 9.0m, except it is 1.0m for secondary buildings.
- Maximum density is 160.0 units per gross hectare (65 units/gross acre). .

SECTION 9.14 : HIGH-RISE APARTMENT RESIDENTIAL

9.14.6 Other Regulations

- Individual convenience retail services and personal services are limited to a maximum floor area of 300m² and only permitted when developed as an integral component of a primary building. These uses are not permitted above the ground storey.
- Indoor participant recreation services are only permitted when developed as an integral component of a primary building.
- For multi-unit residential housing, one office may be operated for the sole purpose of the management and operation of the multi-unit residential development. (Bylaw 5440)
- A minimum area of 5.0m² of private open space shall be provided per bachelor dwelling, congregate housing bedroom or group home bedroom, 10.0m² of private open space shall be provided per 1 bedroom dwelling, and 15.0m² of private open space shall be provided per dwelling with more than 1 bedroom.
- No continuous building frontage shall exceed 40.0m for a 3 to 4.5 storey building, or 65.0m for a two storey building. If the frontage is interrupted by an open courtyard equivalent in depth and width to the building height, the maximum continuous 3 storey building frontage may be 80.0m provided that no building section exceeds 40.0m.
- For seniors assisted housing, seniors housing and seniors residential care and seniors supportive housing, a safe drop-off area for patrons shall be provided on the site.
- In addition to the regulations listed above, other regulations may apply. These include the general development regulations of Section 4 (secondary development, yards, projections into yards, lighting, agricultural setbacks, etc.); the specific use regulations of Section 5; the landscaping and fencing provisions of Section 6; and, the parking and loading regulations of Section 7. (Bylaw 5339)
- As per Section 4.10.2 All buildings and structures, excluding perimeter fencing (garden walls and fences) on lots abutting City Roads as identified on Schedule "B" shall not be sited closer to the City Road than the setback as per the appropriate zone measured from the offset Rights of Way as illustrated on Schedule "B". (Bylaw 5440)

4.15 Development Covenants

4.15.1 At the time of rezoning, prior to bylaw adoption, City Council may at its discretion require the property owner to register a covenant on the title of the property limiting the permitted uses and/or densities within the approved land use zones, so as to reflect the specific approved development plan.

4.16 Hillside Development Areas

- 4.16.1 Vernon's Official Community Plan (OCP) establishes Development Permit Areas (DPAs) for all areas within the City of Vernon. Vernon's Hillside Guidelines and Regulations Policy defines hillsides and provides Goals and Objectives for development of lands on hillsides and slopes under 30%. No construction of a building, structure or swimming pool is permitted on slopes 30% or greater.
- 4.16.2 No subdivision of land creating lots is permitted where less than 100m² of contiguous buildable area which meets all bylaw regulations herein for each lot is provided, with the exception of boundary lot adjustments. (Bylaw 5433)

7.0 Parking & Loading

7.1 On-site Vehicle Parking

7.1.1 On-site parking requirements established prior to the adoption of this Bylaw shall deem to be the applicable parking requirements for existing **development** established prior to the City of Vernon Zoning Bylaw #5000. Where any new **development** is proposed, change of **use** of existing **development**, or enlargement of existing **development** after the adoption of this Bylaw, on-site **vehicle** parking (including **accessible parking spaces** and visitor parking) shall be provided by the property owner in accordance with Table 7.1 of this Bylaw. (*Bylaw* 5744)

Number of Spaces

- 7.1.2 The minimum number of on-site vehicle parking spaces required for each use is specified in the Parking Schedule (Table 7.1) except where additional parking is required by the *Ministry of Transportation and Infrastructure* if the site has direct access to a provincial highway. Where the total number of parking spaces on a property exceeds 15 parking spaces, the maximum number of parking spaces for each use class may be up to 125% of the minimum number of required parking spaces.
- 7.1.3 Where calculation of the total number of **parking spaces** yields a fractional number over decimal .5, the required number of spaces shall be the next highest whole number.
- 7.1.4 Where more than one calculation of **parking space** requirements is specified for a land use, the greater requirement shall be applied.
- 7.1.5 Where the Parking Schedule does not clearly define requirements for a particular **development**, the single **use** class or combination of **use** classes most representative of the proposed **development** shall be used to determine the parking requirements.
- 7.1.6 Where a **development** consists of a mix of **use** classes, the total on-site parking requirement shall be the sum of the on-site parking requirements for each **use** class, unless supported by a shared parking study endorsed by the authority having jurisdiction (City of Vernon or *Ministry of Transportation and Infrastructure*).

7.1.7 Accessible parking spaces:

For all classes, shall be designated at a rate of 2% of all required parking spaces, rounded upward to the nearest whole number, when on-site parking areas require 11 or more total parking spaces, except that assembly occupancy uses shall be designated at a rate of one for each

TABLE 7.1 - PARKING SCHEDULE

* Note: GFA = Gross Floor Area

Type of Development or Use:

Required Parking spaces:

RESIDENTIAL & RESID	ENTIAL RELATED USES							
Apartment Hotels	1.0 per sleeping unit							
All uses listed in the RST1 and RST2	1.0 per residential unit							
Apartment Housing	1.0 per bachelor dwelling unit							
Row Housing	1.25 per 1 -bedroom dwelling unit							
Stacked Row Housing	1.5 per 2-bedroom dwelling unit							
Four-plex	2.0 per 3-or-more bedroom dwelling							
	unit							
Three-plex Cottages In addition to the above total required space shall be designated visitor parking for ever								
Bed & Breakfast Homes	1 per sleeping unit, plus 2 spaces required for the corresponding primary dwelling unit							
Boarding Rooms	1 per 2 sleeping rooms, plus 2 spaces required for the corresponding primary dwelling unit							

Employee Housing, Dormitory

0.5 stalls per sleeping unit

In addition to the above total required spaces for a **development**, 1 additional parking space shall be provided and designated visitor parking for every 7 **sleeping units**

Employee Housing, Self-Contained Dwelli	ng
	1.0 staff per bachelor dwelling unit
	1.25 stalls per 1 bedroom dwelling unit
	1.5 stalls per 2 bedroom dwelling unit
	2.0 stalls per 3-or-more bedroom
	dwelling unit.
In addition to the above total required sp	· · ·

In addition to the above total required spaces for a **development**, 1 additional **parking space** shall be provided and designated visitor parking for every 7 **dwelling** units.

Marine Equipment Rentals

1 per 1900m² GFA

TABLE 7.3 - BICYCLE	PARKING SCHEDULE
* Note: GFA = Gross Floor Area	
Type of Development or Use:	Required Bicycle Parking spaces:
RESIDENTIAL & RESIDI	ENTIAL RELATED USES
Apartment Housing Row Housing Stacked Row Housing Employee Housing, Dormitory Employee Housing, Self-Contained Dwe	Class I: 0.5 per dwelling unit Class II: 0.25 per dwelling unit (Bylaw 5339)
Rooming Houses or Boarding Rooms (5 or more bedrooms)	Class I: 0.1 per bedroom
Group Homes, Major (5 or more bedrooms)	Class I: 0.1 per bedroom
Congregate Housing, Minor Congregate Housing, Major	Minimum 1 Class I: 0.1 per bedroom
Mobile Home Parks	Class I: 0.5 per mobile home (Bylaw 5339)
COMMERC	CIAL USES
For a change of commercial uses in existin requirements may be waived if there is no parking.	g buildings with a zero setback, these physical opportunity to provide bicycle
Amusement Arcades, Major and Minor	Class I: 0.2 per 100m ² GFA or one per 10 employees, maximum 20 Class II: 1.0 per 100m ² GFA
Auctioneering Establishments	Class I: 0.2 per 100m ² GFA or one per 10 employees, maximum 20

SECTION 7 : PARKING & LOADING ZONING BYLAW NO. 5000 (2003) PARKING - 25 of 31 CITY OF VERNON

September 7, 2021

ISSUED FOR USE FILE: 704-ENG.KGEO03637-01 Email: rjosan@josanproperties.com

Josan Ventures Inc. #835, 4445 Calgary Trail NW Edmonton, AB T6H 5R7

Attention: Raka (Rocky) Josan President

Subject: Preliminary Geotechnical Assessment Report for Phase 1 Development at 3281, 3351 and 3401 Alexis Park Drive in Vernon, BC

1.0 INTRODUCTION AND BACKGROUND

Tetra Tech Canada Inc. (Tetra Tech) have been retained by Josan Ventures Inc. (The Client) to provide geotechnical services for their anticipated upcoming development spread across three lots identified as 3281, 3351 and 3401 Alexis Park Drive in Vernon, BC.

Based on the information provided by the client, we understand that the proposed development will be comprised of a 3-phase development at the property. Phase 1 may include a 11-storey high-rise building, with a footprint of approximately 981 m² in size, and a 3-level podium comprised of above ground parkade/retail amenities. Phase 2 and 3 are anticipated to be similar high-rise structures but were not included in the current scope of work, as per our proposal entitled *"Geotechnical Assessment Proposal for 3281, 3351 and 3401 Alexis Park Drive"* dated July 27, 2021.

Pursuantly, Tetra Tech was requested to undertake geotechnical assessment for the Phase 1 development at 3401 Alexis Park Drive (herein referred to as "The Property") and provide foundation design recommendations, with application to the upcoming Phase 2 and 3 works. The client also provided a previous Site Inspection and Recommendations Report for the property, undertaken by Dwayne Tannant, P.Eng. dated October 15, 2015 (Tannant, 2015), that outlines the background and recommendations for the planned rock excavations at the property. Information presented in Tannant, 2015 has been used in conjunction with the outcomes of our subsurface exploration to evaluate and analyze foundation options for the intended design.

This report presents the findings of our geotechnical assessment, outlines the outcomes of our analyses, and provides the necessary recommendations for the proposed design for the Phase 1 Development.

2.0 SUBSURFACE EXPLORATION

The subsurface exploration of the property was conducted on August 12th and 25th, 2021 in a two-stage assessment employing testpitting and drilling to profile the existing ground conditions. The testpitting portion of the exploration was undertaken using a Hitachi 225 excavator provided by Big M Excavating Ltd. from Vernon, BC and the drilling stage was carried out using a truck mounted drill rig operated by On the Mark Ltd. from Kelowna, BC. A Tetra Tech field representative supervised both programs, directed the investigation depths, undertook in-situ field testing, and collected samples for laboratory testing. The exploration program included the following:

> Tetra Tech Canada Inc. 150, 1715 Dickson Avenue Kelowna, BC V1Y 9G6 CANADA Tel 250.862.4832 Fax 250.862.2941

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG_KGEO03637-01 | SEPTEMBER 7, 2021 | ISSUED FOR USE

- Excavating nine testpits to profile the shallow bedrock stratigraphy and obtain disturbed soil and rock samples.
- Drilling one Solid Stem Auger borehole complemented with Overburden Drilling Excentric (ODEX) Air Rotary
 to verify bedrock depth and evaluate rock consistency in areas where shallow bedrock was not encountered.
- Completing in-situ field testing using Scala Dynamic Cone Penetration (SDCP) testing to assess strength consistency of the overlying surficial layers.

Initial exploration program included a total of nine testpits completed within the property to depths ranging from 0.7 m to 5.3 m. Testpit locations were selected based on bedrock outcrops and anticipated shallow bedrock stratigraphy. However, some of the testpits at the low-lying areas in the property did not encounter bedrock within the maximum target depth of 5.0 m. As such, a subsequent exploration program was undertaken using solid stem drilling complemented with ODEX air rotary to confirm the deeper bedrock stratigraphy.

Approximate testhole locations are shown on Figure 1 and completion details provided below in Table 2-1. Testhole stratigraphy and inferred subsurface characteristics are presented in testhole logs attached in Appendix A.

Testhole ID	UTM Easting ¹ (m)	UTM Northing ¹ (m)	Surface Elevation ²	Testhole Depth (m)	Testhole Description
BH21-01	337233	5570846	390.0	9.0	Borehole
TP21-01	337241	5570852	390.0	5.3	Test Pit
TP21-02	337259	5570801	399.0	0.7	Test Pit
TP21-03	337279	5570848	400.0	1.6	Test Pit
TP21-04	337248	5570775	396.0	0.8	Test Pit
TP21-05	337221	5570827	392.0	5.3	Test Pit
TP21-06	337229	5570837	391.0	5.3	Test Pit
TP21-07	337238	5570839	391.0	4.9	Test Pit
TP21-08	337228	5570801	394.0	4.2	Test Pit
TP21-09	337235	5570728	392.0	0.7	Test Pit

Table 2-1: Testhole Completion Details

1: Coordinates are in UTM Zone 11 and obtained from City of Vernon map viewer.

2: Elevations are in Metres Above Sea Level (masl) and estimated from City of Vernon 1 m contours.

3.0 LABORATORY TESTING

Disturbed soil samples collected during subsurface exploration were sent to our laboratory for classification testing and soil characterization that included Atterberg limits, moisture contents, and sieve gradation analysis. Laboratory test results are indicated on the borehole logs with detailed laboratory test results, provided in Appendix B. A summary of the laboratory test results is presented in Table 3-1.

			Moisture	Gra	ain Size /	Analysi	s	A	tterberg L	imits	Point Load
Borehole ID	Depth (m)	uscs	Content	Crowd	Sand	Fit	nes	Liquid	Plastic	Plasticity	Index, I _{s(50)}
			(%)	Gravel	Sand	Silt	Clay	Limit	Limit	Index	(MPa)
BH21-01	4.8-5.1	GM	14.6	31	32	30	7	×			7
	0.6-0.9	GP	7.3	54	30	1	6	ŝ	٠	-	9 4 \
	1.3-1.5	CI-CH	33.0	×.	<u>a</u> :	12	12 III III		28	23	.
	2.8-3.0	СН	50.5	-		(+)	•	×	۲		- 30
TP21-01	3.6-3.8	СН	59.4	3.85		12:			÷	4	(1
	4.5-4.6	СН	45.7	-	-	-	-	72	29	43	
	5.0-5.3	GP-GM	8.4	49	28	2	23	•		Ē	
TP21-02	0.7-0.8	Bedrock	-	-	-			4		*	7.15
TP21-03	1.0-1.2	GP-GM	4.8	36	29	3	85	-	-		
TP21-05	2.9-3.1	CI	26.0	-	-	N N E	-	46	21	25	3
	3.8-3.9	GP	2.6	78	16		6	47	a		396
TP21-08	4.2-4.3	Bedrock	-	*	~		-	-		-	1.01
TP21-09	0.7-0.8	Bedrock							1572	۰.	1.75

Table 3-1: Summary of Laboratory Results

4.0 SITE CONDITIONS

4.1 Site Description

The Property is situated along Alexis Park Drive to the west and bounded to the east by a steep hillside outcrop. The property has a low-lying bench at the northwest corner with access from Alexis Park Drive. From the lower bench, the topography rises steeply in a southeasterly slope with multiple bedrock outcrops. Along the eastern and southwestern property lines, the topography changes to near vertical bedrock faces.

4.2 Interpreted Soil Stratigraphy

The Surficial Geology Map of Vernon, map 1392A (R.J. Fulton, 1963-65) and the Geological Map of Okanagan Watershed (Okulitch, A.V., 2013) shows that the underlying geology at the site is comprised of Lacustrine deposits comprised of silt, clay and gravel overlying the Marron bedrock formations comprised of undivided units of Andesite, Breccia and Dacite flows.

The soil conditions encountered during the geotechnical subsurface exploration are consistent with the geology discussed above. The soil profile at site generally consists of:

Gravel, silt and clay deposits from surface to depths ranging from approximately 0.6 to 8.4 m. These deposits
are highly undifferentiated and are found at the property as Gravel and Silt units or high plastic Silty Clay

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG_KGEO03637-01 | SEPTEMBER 7, 2021 | ISSUED FOR USE

deposits. These deposits were found to have a strength consistency of compact to dense and stiff to very stiff, respectively. Underlain by:

Bedrock formations found as bedrock outcrops across the northwestern, western and southern parts of the
property, with shallow bedrock encountered along the middle of the property at depths ranging from
approximately 0.7 m to 2.5 m. Along the northeastern boundary, bedrock stratigraphy was encountered at
deeper depths in the range of approximately 5.0 m to 10.0 m. The bedrock formations were noted to vary from
weak to medium strong, based on excavator's effort and significant difficulty excavating through it.

Approximate areas of bedrock outcrops, shallow bedrock (less than 2.5 m depth) and deep bedrock zones (greater than 2.5 m depth) are presented in Figure 1.

4.3 Groundwater

Groundwater was encountered in some of the testpits at the northeastern lower bench with the depth of groundwater ranging between 3.6 m and 5.0 m below current ground level. The occurrence of groundwater was most often observed at the interface of impermeable clay layers and the underlying low permeable gravel and silt layers. A groundwater monitoring well was installed at the borehole location in the lower terrace.

5.0 SEISMIC ASSESSMENT

5.1 Seismic Hazard

Seismic hazard values corresponding to the respective design return period event for reference ground conditions at the site were obtained from the Earthquakes Canada online hazard calculator maintained by Natural Resources Canada (NRCAN, 2021). These values are developed for the 2015 National Building Code of Canada (NBCC) for a reference site classification "Class C" at a probability of exceedance in 50 years and will need to be adjusted to site-specific conditions. The earthquake ground motions at the subject site are summarized below in Table 5-1:

Table 5-1:	5% Damped Spectral Acceleration Values for Reference Site Class C Conditions	
(NRCAN, 202	21)	

Return Period (years)	Sa(0.05 s) (g)	Sa(0.10 s) (g)	Sa(0.2 s) (g)	Sa(0.50 s) (g)	Sa(1.0 s) (g)	Sa(2.0 s) (g)	Sa(5.0 s) (g)	PGA _{ref} (g)
100	0.008	0.011	0.019	0.023	0.017	0.011	0.003	0.007
475	0.025	0.037	0.051	0.051	0.039	0.025	0.010	0.023
975	0.041	0.061	0.080	0.073	0.055	0.037	0.015	0.036
2,475	0.072	0.108	0.133	0.109	0.081	0.056	0.026	0.061

Sa = spectral acceleration; g = 9.81 m/s²

5.2 Seismic Site Classification

As per the British Columbia Building Code (BCBC, 2018), the seismic site classification can be determined using the "Average Standard Penetration Resistance" (N_{60}) in the top 30 m of soils. Based on the results of subsurface exploration, the measured average N_{60} value is estimated to be greater than 50 blows per 300 mm. Based on this

analysis, site conditions are expected to represent characteristics of "Very Dense Soil and Soft Rock" (Site Class C) conditions.

6.0 GEOTECHNICAL DISCUSSIONS

Based on our understanding of the soil conditions on-site, Tetra Tech considers that from a geotechnical perspective, the proposed development is feasible, given that our recommendations presented in this report are followed as indicated and Tetra Tech is fully involved during construction to provide field reviews to confirm that work is carried out in general accordance with the intent of our recommendations.

The recommendations below are preliminary in nature and provided without an initial design in place. Once the detailed design has occurred, the following sections should be reviewed and revised by the geotechnical engineer.

6.1 Site Preparation

Within the footprint of all buildings and roadways it is recommended that all vegetation be cleared, and all topsoil and organic mixed layers be stripped to expose bedrock. Despite removal of all overburden layers, blasting may be required to profile the bedrock to the anticipated design. The requirements and extent of blasting is to be confirmed and deemed competent on the site by Tetra Tech personnel during the site preparation.

6.2 Excavations and Rock Blasting Considerations

All work, conducted in and around excavations, should be carried out in accordance with requirements specified by WorkSafe BC Occupational Health & Safety Regulations, Part 20. Unsupported excavations greater than 1.2 m depth should be reviewed by a professional engineer in accordance with WorkSafe BC. Alternatively, service line trenches or excavations deeper than 1.2 m must be shored. Temporary trenches for underground utilities excavated within existing structural fill materials should be excavated at a slope no steeper than 1H:1V.

6.2.1 Soil Cuts

Given soil material properties observed, temporary dry soil cuts of up to 1.5 m in height may be at angles of up to 0.25H:1V. Long-term soil cut slopes should conform with the existing slopes of 2H:1V. Since groundwater was encountered spatially during site investigation, if a cut slope displays seepage the cut slope should be no greater than 3H:1V. If cuts greater than 3H:1V are required on faces with seepage, site-specific measures may be required, and site-specific slope stability analysis is recommended.

6.2.2 Rock Cuts

Cut slope stability in bedrock will be highly dependent on-site specific rock mass characteristics (e.g., spacing and orientation of rock discontinuities).

It is recommended that permanent and temporary rock cuts be evaluated on a case-by-case basis during construction by a geotechnical engineer with expertise in rock mechanics. However, general recommendations for permanent rock cut design include:

Permanent rock cut slopes as steep as 0.4H:1V (70°) are considered suitable for design.

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG.KGE003637-01 | SEPTEMBER 7, 2021 | ISSUED FOR USE

- Permanent rock cuts within 10 m of buildings should have their long-term stability assessed by a geotechnical engineer.
- Use of catch areas for potential rockfall may represent the most cost-effective solution to address long-term stability of permanent rock cuts. Catch areas considered suitable for design purposes should have the following minimum dimensions based on height of rock cut:
 - Rock cuts less than 3 m in height; 1.5 m wide, 0.5 m deep catch area.
 - Rock cuts between 3 m and 6 m; 2 m wide, 0.9 m deep catch ditch.
 - Rock cuts between 6 m and 10 m; 3.0 m wide, 1.2 m deep catch ditch.
 - Rock cuts between 10 m and 15 m; 4.5 m wide, 1.8 m deep catch ditch.
- Catch ditches below rock cuts should be sloped such that the deepest part of the ditch is next to the rock cut.
- Alternative options, such as rock bolting, rockfall catch fence, shotcrete or rock mesh may be used instead of catch areas if permanent infrastructure needs to be placed closer to permanent rock cuts because of site constraints. These options can be evaluated once rock cuts are exposed and assessed.

General recommendations for temporary rock cut design include:

- Temporary rock cuts less than 2 m in height can be vertical provided they are reviewed by a qualified geotechnical engineer before construction below them occurs.
- Temporary rock cuts between 2 m and 10 m in height can be as steep as 0.2H:1V provided they are reviewed by a qualified geotechnical engineer before construction below them occurs.
- All temporary (< 6 months) rock cuts should have a minimum 0.75 m high concrete barrier (e.g., lock block)
 placed at the base of the cut to protect infrastructure and workers during construction. The minimum offset of
 the edge of the barrier from the base of the temporary rock cut should be as follows:
 - Rock cut height less than 3 m; 1 m offset.
 - Rock cut height between 3 to 10 m, 2 m offset.

If site constraints require placement of buildings or construction workers closer to temporary cut faces, alternative options for protection from rockfall, or stabilization of temporary rock cuts may include rock bolting, rock removal, temporary mesh or catch fence placement.

6.3 Building Foundation

We have assumed that the proposed footings will consist of concrete strip footings with a minimum width of 1.8 m and 0.9 m for spread footings. Tetra Tech recommends dowelling the foundations into the underlying bedrock. However, given the varying bedrock profile and the changing topography at site, we anticipate that the foundation may be comprised of the following two different categories:

- Shallow bedrock foundations.
- Deep bedrock foundations.

6.3.1 Shallow Bedrock Foundations

- Excavate all existing weathered rock in order to expose fresh bedrock underneath footing footprints. The extent of excavation for bedrock exposure must be established and verified by a Geotechnical Engineer.
- Embed footings at approved bedrock elevations. Footings shall be embedded by dowelling a minimum of 600 mm into bedrock using corrosion protected dowel bars. Detailed design for layout, spacing and type of dowel bars shall be carried out by a Structural Engineer.

Provided the above preparation is undertaken, a factored ULS of 500 kPa with SLS of 300 kPa will be applicable. Under these loads, the SLS settlement will be limited to 25 mm, with the differential settlement less than 1 in 500.

6.3.2 Deep Bedrock Foundations

Along the northeastern boundary of the anticipated building, deep foundation systems may be required to socket into the underlying bedrock formations. Based on the current ground conditions and the anticipated design, it is our opinion that the following foundation options will be suitable for the proposed structure:

- Socketed Drilled Pipe Piles.
- Socketed Drilled H-Piles.

6.3.2.1 Socketed Drilled Pipe Piles

Based on the anticipated design, Tetra Tech has calculated and analysed axial resistances and lateral load response for a range of typical pipe pile sizes.

The resulting estimated unfactored and factored Ultimate Limit State (ULS) capacities for socketed pipe piles are presented in Table 6-1 below. The axial pile capacities below have been estimated for a pipe pile socketed into bedrock with an assumed minimum Rock Quality Designation (RQD) of 80% using the method described Canadian Foundation Engineering Manual (CFEM, 2006). For ULS design, the factored axial resistance of the pile shall be used for structural design purposes. The ULS pile capacity can be calculated by multiplying the unfactored ULS by an appropriate geotechnical resistance factor (GRF). Given the information available for the area, a GRF of 0.4 should be adopted for static loading. If higher factored ULS capacities are required, a GRF of 0.6 may be adopted provided a pile load test is undertaken for the proposed pile design.

Pile Length ¹	Unfactored Ult	imate Limit State (MN)	(ULS) Capacity	Factore	d ULS Capacity GRF ² of 0.4	(MN) @
(m)	0.4 m Dia	0.45 m Dia	0.6 m Dia	0.35 m Dia	0.4 m Dia	0.45 m Dia
10.0	1.5	2.0	3.5	0.6	0.8	1.4

Table 6-1: Estimated Axial Capacity of Socketed Pipe Piles

1 - Pile Length is assumed from bottom of pile cap.

2 - Geotechnical Reduction Factor (GRF) is based on guidelines presented in the Canadian Foundation Manual (CFEM 2006).

6.3.2.2 Socketed Drilled H-Piles

Based on the anticipated design, Tetra Tech has calculated and analysed axial resistances and lateral load response for a range of typical pipe pile sizes.

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG_KGEO03637-01 | SEPTEMBER 7, 2021 | ISSUED FOR USE

The resulting estimated unfactored and factored Ultimate Limit State (ULS) capacities for socketed H-piles are presented in Table 6-2 below. For ULS design, the factored axial resistance of the pile shall be used for structural design purposes.

Pile Length ¹	Unfactored Ult	imate Limit State (MN)	(ULS) Capacity	Factored ULS Capacity (MN) @ GRF ² of 0.4							
(m)	0.4 m Dia	0.45 m Dia	0.6 m Dia	0.4 m Dia	0.45 m Dia	0.6 m Dia					
10.0	2.0	3.0	4.0	0.8	1.2	1.6					

Table 6-2: Estimated Axial Capacity of Socketed H-Piles

1 - Pile Length is assumed from bottom of pile cap.

2 - Geotechnical Reduction Factor (GRF) is based on guidelines presented in the Canadian Foundation Manual (CFEM 2006).

The horizontal loading is expected to impose lateral stresses on the piles. Given the lack of structural loadings at this time, a lateral load response has not been undertaken. The estimated lateral spreading for the above options will be carried out once a detailed design and structural loadings are available.

6.4 Foundation Drainage and Groundwater Management

Given the stiff nature of the underlying till material and bedrock encountered on the property, on-site re-infiltration is not considered a viable option. For this reason, we recommend that stormwater planning include collection and discharge of stormwater into any existing drainage system present at the site or in the neighbourhood.

7.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of Josan Ventures Inc. and their agents. Tetra Tech Canada Inc. (operating as Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than Josan Ventures Inc., or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of This Document attached in the Appendix C or Contractual Terms and Conditions executed by both parties.

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG KGE003637-01 | SEPTEMBER 7, 2021 | ISSUED FOR USE

8.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully Submitted, Tetra Tech Canada Inc.

Prepared by: Ramanjeet (Raman) Singh, P.Eng. Geotechnical Engineer Engineering Practice Direct Line: 778.940.1243 raman.singh@tetratech.com

/sa

Attachments: Figure 1 Appendix A Appendix B Appendix C Testpit Layout Plan Borehole Logs Laboratory Test Results Limitations on the Use of This Document

Reviewed by:

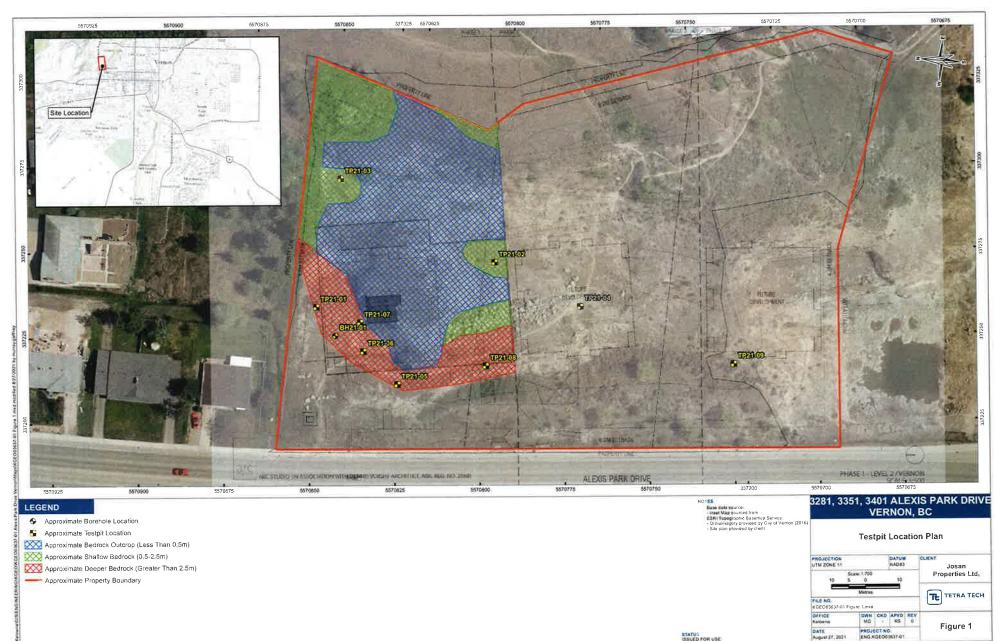
German Martinez, P.Eng. Senior Geotechnical Engineer Engineering Practice Direct Line: 778.940.1224 german.martinez@tetratech.com

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG.KGE003637-01 | SEPTEMBER 7, 2021 | ISSUED FOR USE

REFERENCES

- BCBC, 2018. British Columbia Building Code, Office of Housing and Construction Services, Province of British Columbia and National Research Council.
- Burt G. Look, 2007. Handbook of Geotechnical Investigation and Design Tables 2007. 356 p.
- Chen, F.H (1988) "Foundations on Expansive Soils". Elsevier Scientific Publishing Company
- Climate Atlas (2021). https://climateatlas.ca/map/canada/fdd_baseline#z=7&lat=51.51&lng=-117.03&city=377. Climate Atlas of Canada. Accessed July 6, 2021.
- CFME, 2006. Canadian Foundation Engineering Manual; 4th edition. Canadian Geotechnical Society. 488 p.
- Fulton, R.J. 1963-65. Surficial Geology, Vernon, British Columbia map 1392A. Geological Survey of Canada. Scale 1:126,720.
- Kayabali, 2014. Estimation of Swelling Pressure using Simple Soil Indices, Bulletin of the Mineral Research and Exploration. Kamil Kayabali and Ozgur Yaldiz, University of Ankara.
- NBCC (2015a). User's Guide -NCB 2015, Structural Commentaries (Part 4 of Division B). Canadian Commission on Building and Fire Codes. National Research Council of Canada, Ottawa, Canada
- Natural Resources Canada, 2020. Determine 2015 National Building Code of Canada seismic hazard values. <u>http://www.earthquakescanada.nrcan.gc.ca/hazard-alea/interpolat/index_2015-en.php</u> [accessed December 1, 2020].
- Okulitch, A.V. 2013. Geology, Okanagan Watershed, British Columbia. Open file 6839, Geological Survey of Canada. Scale 1:100,000.
- Vijayvergiya, V.N., O.I. Ghazzaly, 1973. Prediction of swelling potential for natural clays, Proceedings of the 3rd International Conference on Expansive Soils, Vol 1, pp. 227 – 236.

3401 Alexis Park Drive Preliminary Geolechnical Assessment Report - IFU docx



PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG.KGE003637-01 | SEPTEMBER 2021 | ISSUED FOR USE

FIGURES

Figure 1 Testpit Layout Plan

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG.KGE003637-01 | SEPTEMBER 2021 | ISSUED FOR USE

APPENDIX A

BOREHOLE LOGS

Josan Properties Ltd. Project: 3281, 3351, 3401 Ale		_			-(
	exis Par	rk Dr	ive -	Phas	e 1	Pr	roject No: 70	4-ENG.KG	EO03637	-01	
Location: 3401 Alexis Park D						G	round Elev: 3	390 m			
Vernon, BC						U	TM: 337233	E; 5570846	5 N; Z 11		
Core Diameter (mm) Core Diameter (mm) Graphical Representation	Laboratory USCS	Sample Type	Sample Number		istrit	e Siz oution Silt Clay (%) tils	n t & Fie 7 (%) Post-Po 10	eld Vane (kl eak 20 30 Moisture Content 40 60	Pa) Peak 40 Liquid Limit 	MW21-01	66 Elevation (m)
GRAVEL, sandy, some silt trace cobbles, trace to occasional boulders, dry to damp, compact, brown; fine to coarse gravel, rounded to angular, boulders up to 600mm in diameter; fine grained sand; trace rootlets in the top part of the layer. Gravel and the sand; trace rootlets in the top part of the layer. Gravel and the sand; trace rootlets in the top part of the Comparison of the sand; trace rootlets in the top part of the Comparison of the sand; trace rootlets in the top part of the Comparison of the sand; trace rootlets in the top part of the Comparison of the sand; trace rootlets in the top part of the Comparison of the sand; trace rootlets in the top part											389- 388-
3 CLAY, silly, trace rootlets, trace organics, damp to moist, firm to hard, medium to high plasticity, grey/brown.											387- ₹ ₹
Image: Solution of the second seco	GM GP		DS1	31	32	30	7				385- 384-
7 GRAVEL and SAND (TILL), some silt, dense to very dense, dry, brown; sub-angular to sub-rounded gravel. 8 Very Quick BEDROCK, moderately to slightly weathered, grey, moderately strong, R3.											383- 382-
9 END OF TESTPIT - Equipment refusal reached. - Coordinates estimated from GIS Data and handheld GPS unit. - Elevations estimated from City of Vernon 1 m contours.	EDROC		DS3								381
10 Contractor: On The Mark Ltc				L	1		Completion D	epth: 9 m			
		rill R	iq			_	Start Date: Au		021		
TETRATECH Drilling Rig Type: Truck Mou			5	-		_	Completion D			1	_
Reviewed By: RS						-	Page 1 of 1				

VANCOUVER 704-ENG KGE003637-01.GPJ EBA.GDT 8/30/21

				Те	stp	oit	: N	0		٢F	2	1-01									
J	0	S	an Properties Ltd.	Projec	t: 3281	, 33	51, 34	401 A	Alexi	s Pai	rk Di	rive - Phase	1 P	roject No:	704-ENG.K	GEO036	37-01				
			•	Locati	on: 340)1 A	lexis F	Park	Driv	Э				Ground Elev: 390 m							
				Vernon, BC									l	ITM: 33724	11 E; 55708	52 N; Z 1	1				
Depth (m)	Method	Core Diameter (mm)	Soil Description						Distri	butio Sil	n t&		low Pe Pene	er 50 mm stration	Field Post-Peak 10 2 Plastic M Limit (20 4	a) ∳ 40 Liquid Limit ¶ 80	e Elevation (m)				
-			GRAVEL, sandy, some silt trace cobbles, trace to occasional boulders, dry to damp, compact, brown fine to coarse gravel, rounded to angular, boulders up to 600mm in diameter; fine grained sand; trace rootlets in the top part of the layer.				DS1	54	30	16					•						
- 1 - -			CLAY, silty, trace rootlets, trace organics, damp to	0000	СІ-СН		DS2								10	-		389-			
- 2			moist, firm to hard, medium to high plasticity, grey/brown.				002					X	/					388-			
	itting						DS3 DS4							K				9 0 0 0 0 0 0 0			
F	Test Pitting				СН		DS5									•		387-			
3 - - -							DS6									•		307			
- - - - 4					СН		DS7									•					
					СН		DS8 DS9								F	•					
8/12/2021			GRAVEL and SILT, some sand, trace clay, wet, dense to very dense, reddish brown; sub-rounded to		GP-GM		DS10	40	28	23					•			8/12/2024			
on 8/12/20			to very dense, readish brown, sub-rounded to sub-angular gravel. END OF TESTPIT - Equipment refusal reached. - Coordinates estimated from GIS Data and handheld GPS unit. - Elevations estimated from City of Vernon 1 m contours.		GP-GM		010	49	26	23								8/12/2			
-							Contractor: Big M Excavating Ltd.						_	Completion Depth: 5.3 m							
-						Drilling Rig Type: Hitachi 225 Excavator						_	Start Date: August 12, 2021								
	C	"		Logge		_			_	_	_		_		Date: Augu	st 12, 202	21				
-		-		Review	ved By:	RS							- IP	age 1 of 1							

VANCOUVER 704-ENG.KGE003637-01.GPJ EBA.GDT 8/30/21

				Testpit No: TP	2	-	02)								
	-	_	Drepartico I td	Project: 3281, 3351, 3401 Alexis Park					Pro	iect	No: 7	04-ENG.k	(GEO036	37-01		
J	0	S	an Properties Ltd.	Location: 3401 Alexis Park Drive	Ditt	-		-	-	_		: 399 m				
				Vernon, BC				-1				9 E; 5570	801 N; Z	11		
Depth (m)	Method	Core Diameter (mm)	Soil Descrip	tion	Graphical Representation	Sample Type	Sample Number	Gravel (%)	Sand (%)	Sil		Post-Peal	Vane (kl 20 30 Moisture Content 40 60	Pa) Peak 40 Liquid Limit 80	66 Elevation (m)	
0	Test Pitting		SILT and GRAVEL, some sand, trace cobbles, trace grained gravel; fine grained sand		000000		DS1									
			BEDROCK, slightly weathered, grey, moderately stro END OF TESTPIT - Refusal on bedrock - Coordinates estimated from GIS Data and handhelk - Elevations estimated from City of Vernon 1 m conto	I GPS unit.											398-	
-2															397-	
															396-	
-4															395-	
															394-	
6				1	_				1			Donth: 0	7 m		<u></u>	
-				Contractor: Big M Excavating Ltd.		_	_		_			Depth: 0				
		L	TETRA TECH	Drilling Rig Type: Hitachi 225 Excav	ator	_			Start Date: August 12, 2021 Completion Date: August 12, 2021							
	I	5		Logged By: MG			_	-	_	<u> </u>			igust 12,			
	_	_		Reviewed By: RS			_	_	P	age	1 of '	1				

				Testpit No:	TI	P2	1	03	3							
J	lo	S	an Properties Ltd.	Project: 3281, 3351, 3401 Ale				_	_	Pro	oject	No:	704-ENG	KGEO03	637-01	
			•	Location: 3401 Alexis Park Dr	ive					Gro	ound	l Ele	v: 400 m			
	_		I	Vernon, BC									79 E; 557	0848 N; Z	11	
o Depth (m)	Method	Core Diameter (mm)			Graphical Representation	Laboratory USCS	Sample Type	Sample Number		artic Distri (%) pues	butic	on It &	Post-Pe 3 10	Ad Vane (k ak 20 30 Moisture Content 40 60	Peak	Elevation (m)
	Test Pitting	6	SILT and GRAVEL, trace to some sand, trace cobble compact, brown; fine grained sand. GRAVEL and SILT (TILL), sandy, dense to very dens sub-rounded gravel.		00000000000000000000000000000000000000	GP-GM		DS1 DS2	36	29	35		•			
2			BEDROCK, slightly weathered, grey, moderately stro END OF TESTPIT - Refusal on bedrock - Coordinates estimated from GIS Data and handheld	GPS unit										No. of Concession		
3			- Elevations estimated from City of Vernon 1 m conto	Jrs.												397-
- 4																396
																395— - - - - -
6				Contractor: Big M Excavating L	.td.				-	Con	nplet	ion [Depth: 1.6	6 m		-394
]	TETRA TECH	Drilling Rig Type: Hitachi 225 E		ator						_	ugust 12			
	t	;		Logged By: MG										ust 12, 20	21	
-			G KGE003637-01.GPJ EBA GDT 8/30/21	Reviewed By: RS						Pag	e 1 c	of 1				

				Testpit No: TP	2'	1-	04	l							
		C	an Properties Ltd.	Project: 3281, 3351, 3401 Alexis Park			_		Pro	iect	No:	704-ENG	KGEO03	637-01	
J		Э	an Properties Ltu.	Location: 3351 Alexis Park Drive	DIII		naoc		-	-		v: 396 m			_
								_	-	_	_	48 E; 5570	775 N. 7	11	
-	r—	-		Vernon, BC	-					ivi. 3 le Si		48 E; 5570	0775 N; Z		-
					tio,					butic					
		(mm)			enta	e l	Ъ				lt &	Fie	ld Vane (k	Pa)	
£ _	g		Soil		les	μ	E L			Clay	/ (%)	Post-Po		Peak	tion
(m) (m)	Method	Core Diameter	Descrip		Re	Sample Type	Sample Number	Gravel (%)	Sand (%)	-		10	20 30	40	Elevation (m)
	l≥	e D	Descrip	lion	<u>g</u>	San	amp	Lave	anc	(%	(%)	Plastic	Moisture	Liquid	
		8			Graphical Representation		S	۱۵	0,	Silt (%)	Clay (%)	Limit	Content	Limit	
0										0,		20	40 60	80	-396
_			SILT and GRAVEL, some sand, trace cobbles, trace	rootlets, dry, loose to compact, brown; coarse	17	ľ						10.1	1000		- 350
-	Test Pitting		grained gravel; fine grained sand		Pelle								100		1
Ì.	E				30		DS1								
2	ŝ				BR								i b		-
	ľ٣				60										
-			BEDROCK, slightly weathered, grey, moderately stro							_	-		18 - 14	3	2
-			END OF TESTPIT	ig, ito.	17207										395-
-1			- Refusal on bedrock												-
-			 Coordinates estimated from GIS Data and handheld Elevations estimated from City of Vernon 1 m contout 												2 2
-															-
1															
-															2
															394-
-2															
-															
2															2
- 															
-															
-															3
-															393-
-3															393
-															- 3
Ľ.															
-															÷
															1 2
-															
-															392-
-4										- 0					392
-															
- 1															-
															(2
۰ <u>ـ</u>															- 391
-5				22	- 14										381
2															5- 1-
															1
-															
i i															-
6															390
-		-		Contractor: Big M Excavating Ltd.						-	_	Depth: 0.8			
			TETRA TECH	Drilling Rig Type: Hitachi 225 Excavato	or				Star	t Da	ate: A	August 12	2021		
	U	;		Logged By: MG					Соп	nple	tion	Date: Aug	ust 12, 20)21	
	_			Reviewed By: RS					Pao	e 1 (of 1				

				Testpit No:	TI	P2	1-	05	5							
	Ja)S	an Properties Ltd.	Project: 3281, 3351, 3401 Ale				_		Pro	oject	No:	704-ENG.	KGEO03	637-01	
				Location: 3401 Alexis Park D						+	<u> </u>	_	v: 392 m			
				Vernon, BC						UT	M: 3	372	21 E; 5570	827 N; Z	11	
Depth (m)	Method	Core Diameter (mm)	Soil Descriptio	on	Graphical Representation	Laboratory USCS	Sample Type	Sample Number		artic Distri (%) pues	butic Sil	on It&	Post-Peal 10 Plastic I Limit	20 30 Moisture Content	Pa) Peak 40 Liquid Limit 80	Elevation (m)
0		t	SILT and GRAVEL, some sand, trace cobbles, trace	rootlets, dry, loose to compact,	272	-	-		-	-	_		20 4	40 60	80	392
- 1	Test Pitting		brown; coarse grained gravel; fine grained sand CLAY, silty, some gravel to gravelly, damp, firm to ve white/grey.	ry stiff, medium plasticity, brown with	2000 000 000 000 000 000 000 000 000 00			DS1								391-
- 4			- becomes more light brown/orange colour at 4.1m CLAY, trace silt, damp to moist, firm to hard, medium	to high plasticity, grey/brown.		CI		DS2					••••			389-
- 5 - 5			END OF TESTPIT - Equipment refusal reached. - Coordinates estimated from GIS Data and handheld - Elevations estimated from City of Vernon 1 m contor					DS4					•			387— - - - - - - - - - - - - - - - - - - -
6				Contractor: Big M Excavating I	td				+	Cor		ion ^r	Depth: 5.3 i	n		-386
		٦	TETDA TECU	Drilling Rig Type: Hitachi 225 E	_	ator			-		-		ugust 12, 2			
	t	,	TETRA TECH	Logged By: MG					-	_	_	_	Date: Augu		21	
)	1	Reviewed By: RS					-	Pag	-	_			<u> </u>	

	06	san Properties Ltd.	Testpit No: TF Project: 3281, 3351, 3401 Alexis Pa		_			Pro	iect	No:	704-ENG.K	GEO03	637-01	
U	US		Location: 3401 Alexis Park Drive		-				-		/: 391 m			-
			Vernon, BC		_	_		-		_	9 E; 55708	37 N: Z	11	
				E				artic	le Si	ze	-,	, .		T
	Ē	Ê		Graphical Representation		5)istri I	butio			., ,,		
	Method			esen	ype	Sample Number				t& '(%)	Field Post-Peak	Vane (k	Pa) Peak	5
Ē	Method	So		Sepr	ple T	e N	(%)	(%)		(,	10 2		40	Elevation
	Ň a	Descri	plion	ical I	Sample Type	ampl	Gravel (%)	Sand (%)	(%	(%)	Plastic N		Liquid	Ť
	S	3		raph		S	0		Silt (%)	Clay (%)		Content	Limit	
			les secondes les des des brouns fins	6591			_			_	20 4	0 60	80	-3
		SILT and GRAVEL, trace to some sand, trace cobb grained sand	ies, occasional douiders, dry, brown, line	59										
				-QK										
				Pato										
		_		:00										
		GRAVEL and SILT (TILL), sandy, some cobbles, de	ense to very dense, dry, brown; sub-angular to										3	
		sub-rounded gravel.												3
													ŝ.	
									1				1000	
		CLAY, trace silt, trace sand, damp to moist, firm to	hard, medium to high plasticity, grey/brown;	-							and and		<u>.</u>	3
		occasional sand lenses in the clay												
													1	
	est Pitting												1.00	
	<u>ا</u>			. VII		DS1					•		4	
	est	- white lens in the clay at 2.7m				5								
												l		3
							1							
													1.0	
					<u></u>							5 <u>(</u>		
						DS2							÷.	1
													ł	
													-	
												·····	**************************************	3
						000								
					S	DS3							1.1	
											1111			
					8								1	
					-	DS4								
8/12/2021		- becomes wet at 4.9m									anifam			8/12/2021
8/12/			2											8/12
	+	END OF TESTPIT											-	1
		- Equipment refusal reached. - Coordinates estimated from GIS Data and handhe	d GPS unit.											
		- Elevations estimated from City of Vernon 1 m cont	ours.											
			Contractor: Big M Excavating Ltd.				-	Сог	nplet	tion [Depth: 5.3 r	n		La
			Drilling Rig Type: Hitachi 225 Excava	ator	_					_	ugust 12, 2			
	t	TETRA TECH	Logged By: MG		-		-				Date: Augus		21	
-	-											,	<u> </u>	

				Testpit No: TP	21-	07							
		_	an Broportios I td	Project: 3281, 3351, 3401 Alexis Park				Projec	t No:	704-ENG.KG	EO036	37-01	
J	0	5	an Properties Ltd.	Location: 3401 Alexis Park Drive						v: 391 m			
				Vernon, BC		_		UTM:	33723	38 E; 557083	9 N; Z 1	1	
o Depth (m)	Method	Core	Soil Descrip SILT and GRAVEL, trace to some sand, trace cobble	tion	Graphical Representation Sample Type	Sample Number	Di	Sand (%) Sand (%) Sand (%)	tion Silt & ay (%)	Post-Peak 10 20 Plastic M	o 30 bisture ontent	2a) Peak 40 Liquid Limit ∎80	Elevation (m)
			GRAVEL and SILT (TILL), sandy, some cobbles, der sub-rounded gravel.										390
-2	Tost Ditting	Sum - real	CLAY, trace silt, damp to moist, firm to hard, mediun	n to high plasticity, grey/brown		DS1					•		388-
	L11202/21/8		- becomes wet at 4.8m END OF TESTPIT - Target depth reached - Coordinates estimated from GIS Data and handhe - Elevations estimated from City of Vernon 1 m con	ld GPS unit ours.		DS2					•		841322021
_6				Contractor: Big M Excavating Ltd.			- <u>h</u>	Con	npletio	n Depth: 4.9	m		
C				Drilling Rig Type: Hitachi 225 Excav	ator			+		: August 12,			
		E	TETRA TECH	Logged By: MG						n Date: Aug		2021	
		_	J	Reviewed By: RS				Pag	e 1 of	1			

		-	an Proportion 1 to	Testpit No Project: 3281, 3351, 3401 A					_	Pro	iect	No: 1	704-ENG.KGE	003637-01	
J	0	S	an Properties Ltd.	Location: 3401 Alexis Park			- I	llase		-	-		/: 394 m	000007-01	
				Vernon, BC	51140					<u> </u>			28 E; 5570801 I	J [.] 7 11	
	-			Venion, bo	Le				P		le Si			, <u> </u>	T
		2			Graphical Representation	s s		L)istri	butic				
	l	um 1			esen	nsc	ype	mbe			Sil Clay	t&	Field Van Post-Peak	e (kPa) Peak	5
Ē	Method	mete	Soil		Sepr	tory	ple T	e N	(%)	(%)			<u>هــــــــــــــــــــــــــــــــــــ</u>	30 40	Elevation
)	ž	Core Diameter	Descriptio	7 1	call	Laboratory USCS	Sample Type	Sample Number	Gravel (%)	Sand (%)	(%	(%)	Plastic Moist		٦Ö
	- 3	Ŝ			Sraph	Ľ		S			Silt (%)	Clay (%)	Limit Cont		
0		\square	SILT and GRAVEL, trace to some sand, trace cobble	es occasional boulders day brown			\square		-		-		20 40	60 80	-39
			fine grained sand	sa, occasional boulders, dry, brown	300										
					286			DS1					1.11		1
					Pale		200								
					64									-	
			CLAY, silty, some gravel to gravelly, damp, firm to ve	ery stiff, medium plasticity, brown w	th										
			white/grey.												39
								DS2					•		
							-								
	Pitting	11													3
	Ë														
	Test														
															1
								DS3							
														i de la composición de la comp	3
			GRAVEL, some sand, trace silt, trace cobbles; coars	e angular gravel possible		GP		DS4	78	16	6				
			weathered bedrock.	o, angalan gravor, poosisio	0000										3
					00										
			BEDROCK, slightly weathered, grey, moderately stro END OF TESTPIT	ong, R3.		i: C									8
			- Refusal on bedrock												
			 Coordinates estimated from GIS Data and handheld Elevations estimated from City of Vernon 1 m contor 												
															3
_										6			D # 10		
-	-			Contractor: Big M Excavatin						_			Depth: 4.2 m		10
-			TETRA TECH	Drilling Rig Type: Hitachi 22	5 Exca	ator		_				_	August 12, 2021 Date: August 12		
				Logged By: MG											

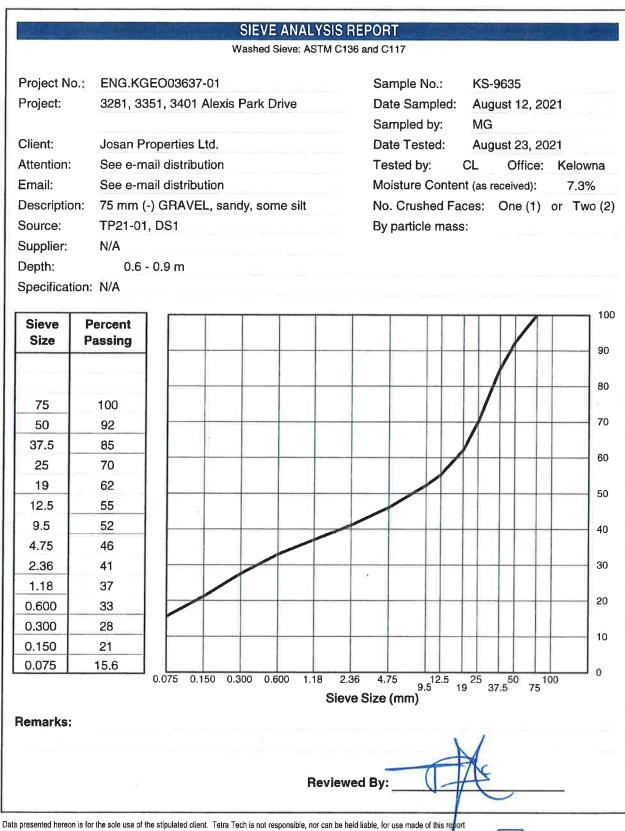
VANCOUVER 704-ENG KGE003637-01.GPJ EBA.GDT 8/30/21

				Testpit No: TP21-	09)							
	0	c	an Properties Ltd.	Project: 3281, 3351, 3401 Alexis Park Drive - F			Pro	biect	No:	704-ENG	KGEO03	637-01	
		3	all Floperties Etd.	Location: 3281 Alexis Park Drive	maer		<u> </u>			v: 392 m			
				Vernon, BC		_	-	_	_		0728 N; Z	11	
<u> </u>	T			Venion, BO	1	ΙP		le Siz		00 2,007	012014,2		1
					atio			butio					
		mm)			sent			Sil	t &	Fie Post-Pe	ld Vane (k	Pa) Peak	
() () () () () () () () () () () () () (Method	leter		Soil	ebre	8	8	Clay	/ (%)			-	Elevation (m)
اھ ج	Met	Core Diameter (mm	Desc	cription	Graphical Representation	Gravel (%)	Sand (%)		1		20 30	40	Ē
		Ore			Phi c	5	S	Silt (%)	Clay (%)	Limit	Moisture Content	Liquid Limit	
		Γ			l B			ŝ	Ö	20	40 60	- 1 80	1
	\vdash	\vdash	SILT and GRAVEL, some sand, trace cobbles, trace	rootlets, dry, loose to compact, brown; coarse grained	1XL						10 00	ł	-392
-	j ng		gravel; fine grained sand		210							-	
÷.	Test Pitting				30						1 3	1	
-	est				Pes								
-	F				30					1	4 4	-	
-	Γ		BEDROCK, slightly weathered, grey, moderately stro	ng, R3.						1			
			END OF TESTPIT - Refusal on bedrock										391-
2			 Coordinates estimated from GIS Data and handheld Elevations estimated from City of Vernon 1 m contor 	GPS unit									1.00000
-			· Elevatoris estimated from only of vehicle rife conto										
-						u - 1							-
-													-
-													
- 2													390-
-													
-													-
_													-
-													
-													
													389-
- 3													-
-													
2													
-													
-													
- 4													388-
-													
-													
2													
-													
													- 387-
-5													-
-													
-													-
2													
6		Ц		Contractor Die M Even sting 1 td					tion	Dopth: 0	7 m		-386
C	-			Contractor: Big M Excavating Ltd.		_	-		_	Depth: 0.			
-	1		TETRA TECH	Drilling Rig Type: Hitachi 225 Excavator		_	<u> </u>	_		August 12		204	
		•		Logged By: MG		_	_	_		Date: Au	gust 12, 20	J21	
	_	_		Reviewed Bv: RS			l Pac	ae 1	of 1				

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG.KGE003637-01 | SEPTEMBER 2021 | ISSUED FOR USE

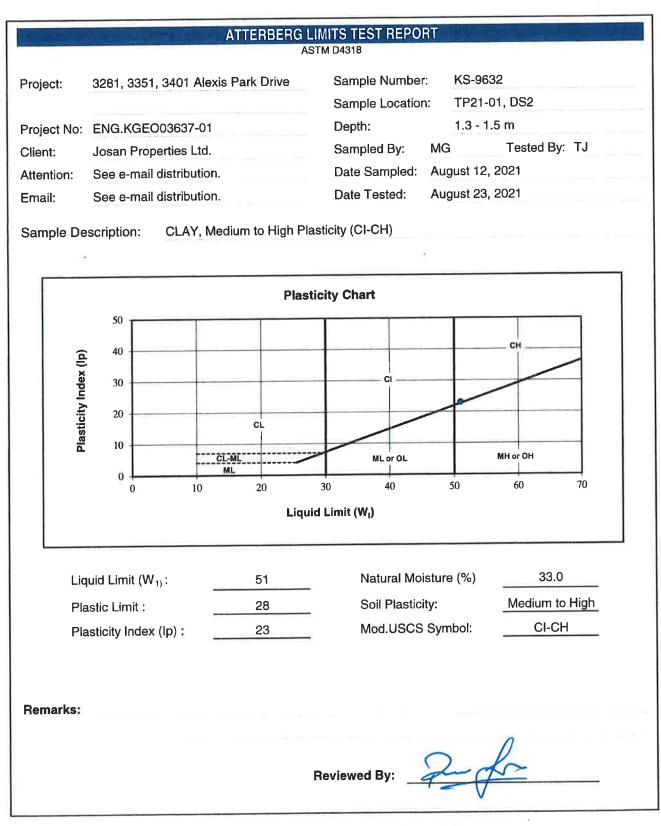
APPENDIX B

LABORATORY TEST RESULTS

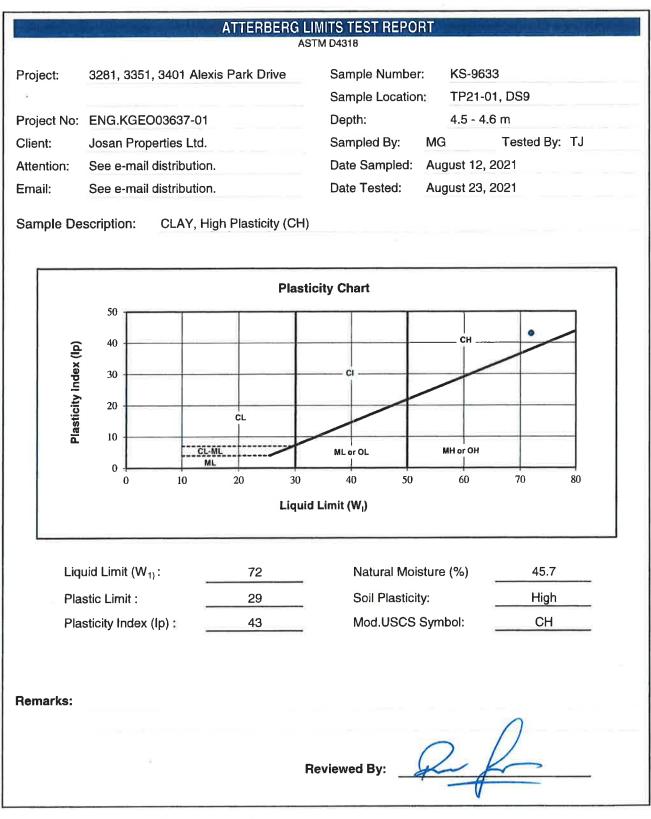


oject:			ASTM D2216	
i ojooti	3281, 3351, 3	401 Alexis Par	Drive Sample No	.: KS-9631
roject No.:	ENG.KGEO0	3637-01	Date Teste	d: August 19, 2021
lient:	Josan Proper	ties Ltd.	Tested By:	CL
ddress:	3281, 3351, 3	401 Alexis Par	Drive, Vernon, B.C. Page:	1 of 2
TP Location	Depth (m)	Moisture Content (%)	Visual Description of	of Soil
TP21-01				
DS1	0.6 - 0.9	7.3		
DS2	1.3 - 1.5	33.0		
DS3	2.1 - 2.3	38.0		
DS4	2.5 - 2.7	38.0		
DS5	2.8 - 3.0	50.5		
DS6	3.2 - 3.5	50.7		
DS7	3.6 - 3.8	59.4		
DS8	4.2 - 4.4	54.8		
DS9	4.5 - 4.6	45.7		
DS10	5.0 - 5.3	8.4		
TP21-03				
DS2	1.0 - 1.2	4.8		
TP21-05				
DS1	2.4 - 2.6	17.7		
DS2	2.9 - 3.1	26.0		
DS3	3.9 - 4.1	15.2		
DS4	4.5 - 4.9	33.2		
	2			
TP21-07				
DS1	3.7 - 3.9	46.6		0
DS2	4.6 - 4.9	52.0		0//

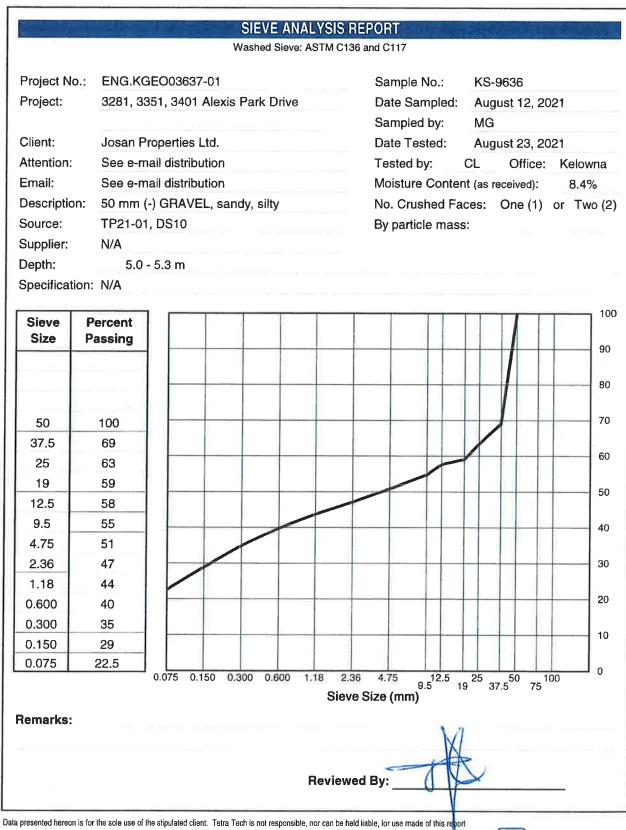
noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

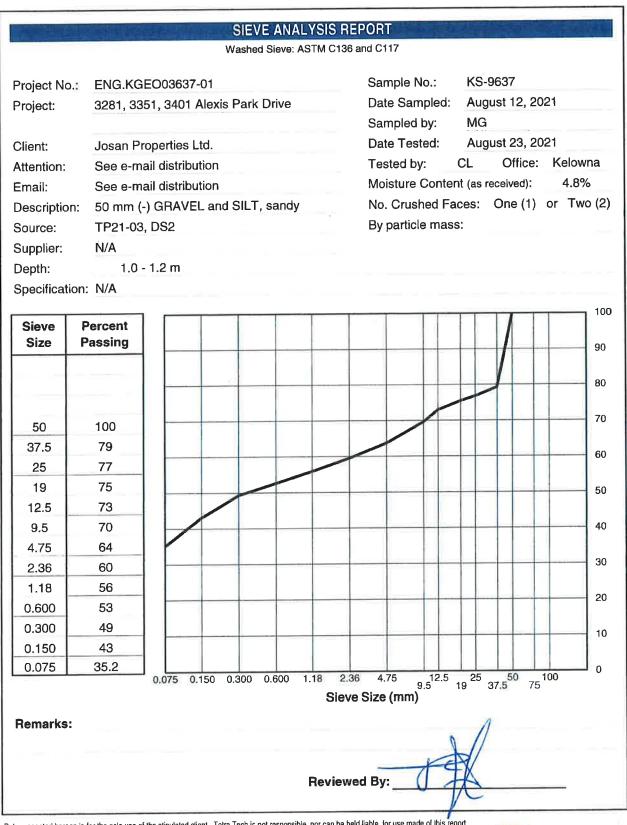

			ASTM D2216		
Project:	3281, 3351, 3	3401 Alexis Pa	rk Drive	Sample No.:	KS-9631
Project No.:	ENG.KGEO0	3637-01		Date Tested:	August 19, 2021
Client:	Josan Proper	ties Ltd.		Tested By:	CL
Address:	3281, 3351, 3	8401 Alexis Pai	k Drive, Vernon, B.C.	Page:	2 of 2
TP Location	Depth (m)	Moisture Content (%)	Visu	al Description of Sc	pil
TP21-06					
DS1	2.5 - 2.8	36.4			
DS2	3.5 - 3.7	40.2			
DS3	4.2 - 4.4	39.9			
DS4	4.7 - 4.9	41.2			
TP21-08					
DS2	1.6 - 1.8	23.0			
DS3	2.7 - 2.9	17.8			
DS4	3.8 - 3.9	2.6			
			Reviewe	d By:	K

Should engineering interpretation be required, Tetra Tech will provide it upon written request.


Data presented nervon is for the sciences of the scipulated client. Tetra Tech is not responsible, nor can be nero liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required. Tetra Tech will provide it upon written request.

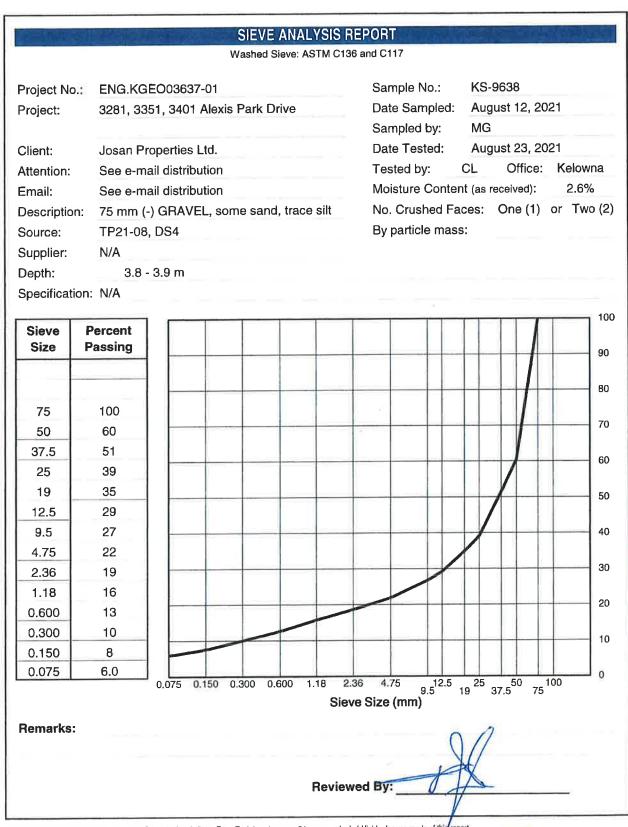
TETRA TECH


Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.


Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

Data presented nereon is for the scie use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

TETRA TECH


Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

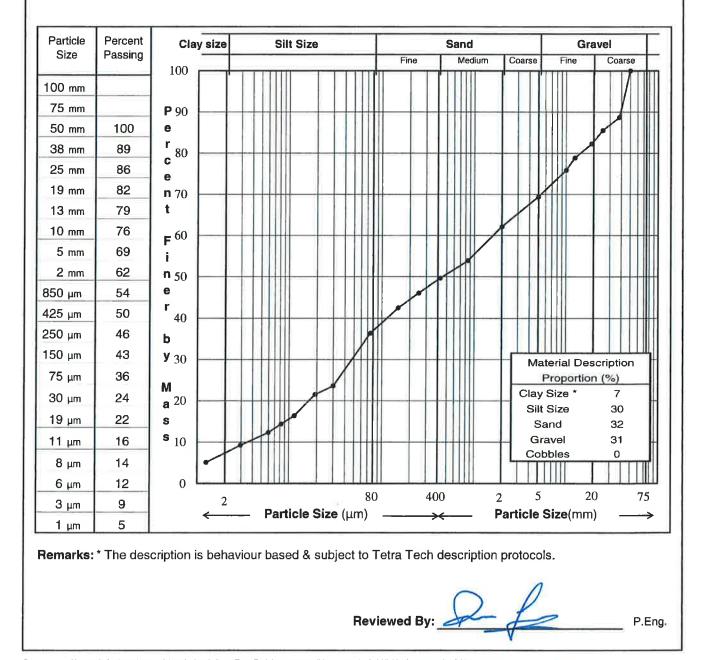
TETRA TECH

ATTERBERG LIMITS TEST REPORT ASTM D4318 Project: 3281, 3351, 3401 Alexis Park Drive Sample Number: KS-9634 TP21-05, DS2 Sample Location: Project No: ENG.KGEO03637-01 Depth: 2.9 - 3.1 m Client: Josan Properties Ltd. Sampled By: MG Tested By: TJ Attention: See e-mail distribution. Date Sampled: August 12, 2021 Email: See e-mail distribution. Date Tested: August 23, 2021 Sample Description: CLAY, Medium Plasticity (CI) **Plasticity Chart** 50 40 CH Plasticity Index (Ip) 30 CI 0 20 CL 10 MH or OH CL-MI ML or OL MI 0 0 10 20 30 40 50 60 70 80 Liquid Limit (W₁) Liquid Limit (W₁₁: 46 Natural Moisture (%) 26.0 Plastic Limit : 21 Soil Plasticity: Medium Plasticity Index (Ip) : 25 Mod.USCS Symbol: CI **Remarks: Reviewed By:**

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

TETRA TECH


TRE

					POINT LOAD	STRENGTH	INDEX					
Project: Project No	-	I, 3351, 3401 Alexis Park Drive		Borehole/Pit Sampled Da		See TP Locat 16-Aug-21	ion Below		Sample No.: Date Tested:	KS-9639, KS-9	9640, KS-9641	
Client:	Josa	n Properties				MG		Tested By:	TJ			
TP Location	Depth (m)	Rock Description (Including nature and orientation of any defects or planes of weakness)	Moisture Condition	Type of Test (Axial, Diametral or Irregular)	Plate Seperation, D (mm)	Length or Width (mm)	Fallure Load, P (kN)	Description of Failed Sample	Cross Sectional Area (mm²)	Equivalent Core Diameter, D _e (mm)	Point Load Index, I _s (Mpa)	Mean Poin Load Index I _{s(50)} (Mpa)
TP21-02	0.7 - 0.8	N/A	Dry	Irregular	35	70	21.21	2 way break	2450	55.85	6.80	7.15
TP21-08	4.2 - 4.3	N/A	Dry	Irregular	45	190	7.86	1 way break	8550	104.34	0.72	1.01
TP21-09	0.7 - 0.8	N/A	Dry	Irregular	45	130	10.22	1 way break	5850	86.30	1.37	1.75
Remarks:		I										
nemarks:												
									Reviewed By:	R	L	P.En
Shape of	Specimen						er Core					
Direction	of Loading	Diametral				Axial				Irreg	ular 6 > 0.50	
Proportion	d Shape ns of ⊺est imens		L > 080				0.3 W < 0 < W Area of plane tran oletan points	- 	E		Minimum stort is area of plane in pidlen points	clina nugh
		ering Classification of Jointed Rock Masses" 7 Civil Engineers, Vol. 15, No. 12, pp. 335 - 344								TE TETR	RA TECH	

PARTICLE SIZE ANALYSIS (Hydrometer) TEST REPORT

ASTM D7928

Project:	3281, 3351, 3401 Alexis Park Drive	Sample No.:	KS-9656
Client:	Josan Properties Ltd.	Borehole/ TP:	BH21-01, DS1
Project No.:	ENG.KGE003637-01	Depth:	4.8 - 5.1 m
Location:	3281, 3351, 3401 Alexis Park Drive, Vernon, B.C.	Date Tested	August 26, 2021
Description **:	SAND, gravelly, silty, trace clay	Tested By:	CL

Data presented hereon is for the sole use of the stipulated client. Tetra Tech is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, Tetra Tech will provide it upon written request.

PRELIMINARY GEOTECHNICAL ASSESSMENT REPORT FOR PHASE 1 DEVELOPMENT AT 3281, 3351 AND 3401 ALEXIS PARK FILE: 704-ENG.KGE003637-01 | SEPTEMBER 2021 | ISSUED FOR USE

APPENDIX C

LIMITATIONS ON THE USE OF THIS DOCUMENT

GEOTECHNICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by third parties other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases,

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this document, at or on the development proposed as of the date of the Professional Document requires a supplementary exploration, investigation, and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to explore, address or consider and has not explored, addressed or considered any environmental or regulatory issues associated with development on the subject site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems, methods and standards employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historical environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional exploration and review may be necessary.

1.11 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

1.12 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

1.13 INFLUENCE OF CONSTRUCTION ACTIVITY

Construction activity can impact structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques, and construction sequence are known.

1.14 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, and the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

1.15 DRAINAGE SYSTEMS

Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function. Where temporary or permanent drainage systems are installed within or around a structure, these systems must protect the structure from loss of ground due to mechanisms such as internal erosion and must be designed so as to assure continued satisfactory performance of the drains. Specific design details regarding the geotechnical aspects of such systems (e.g. bedding material, surrounding soil, soil cover, geotextile type) should be reviewed by the geotechnical engineer to confirm the performance of the system is consistent with the conditions used in the geotechnical design.

1.16 DESIGN PARAMETERS

Bearing capacities for Limit States or Allowable Stress Design, strength/stiffness properties and similar geotechnical design parameters quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable...It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition used in this report. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions considered in this report in fact exist at the site.

1.17 SAMPLES

TETRA TECH will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

1.18 APPLICABLE CODES, STANDARDS, GUIDELINES & BEST PRACTICE

This document has been prepared based on the applicable codes, standards, guidelines or best practice as identified in the report. Some mandated codes, standards and guidelines (such as ASTM, AASHTO Bridge Design/Construction Codes, Canadian Highway Bridge Design Code, National/Provincial Building Codes) are routinely updated and corrections made. TETRA TECH cannot predict nor be held liable for any such future changes, amendments, errors or omissions in these documents that may have a bearing on the assessment, design or analyses included in this report.

Attachment 8

wsp

July 21, 2022

Raka Josan, President Josan Ventures Inc. 835-4445 Calgary Trail NW Edmonton, Ab, T6H 5R7

Parking Relaxation Study for 3401, 3351, and 3281 Alexis Park Drive in Vernon, BC - Final

WSP has been retained as a transportation planning and engineering consultant to conduct a parking relaxation study for the proposed ten-storey mixed-use residential development located at 3401, 3351, and 3281 Alexis Park Drive in Vernon, BC. This development is anticipated to include 91 residential units and 462 m² (4,975 ft²) of retail. The developer is proposing to provide 117 on-site parking spaces as shown in **Appendix A**, which does not meet the City of Vernon's current off-street parking requirements of 143 spaces.

This technical memorandum presents the number of parking spaces recommended for the proposed development, as well as supporting rationale.

OBJECTIVES OF PARKING STANDARDS

Parking design and availability affects land use and development patterns, as well as travel behaviour. Therefore, parking is a complex policy issue involving many interests and viewpoints. Historically, parking standards have been used by cities to specify the minimum amount of parking that must be provided for new development to ensure that ample off-street spaces are available to meet the development's own parking needs. These standards have often been developed under the approach that more parking is better. However, with a growing desire to build higher-density, pedestrian-friendly neighbourhoods, support urban redevelopment, and encourage non-auto modes of transportation, it is recognized that responsible parking standards should represent a balance of transportation and development objectives. In this study, parking standards are viewed as tools to ensure sufficient off-street parking and to minimize impact to the neighbourhood.

APPROACH TO DEVELOPING PARKING RATIOS

Parking standards are commonly developed by either reviewing or borrowing standards from other jurisdictions or from published sources to determine actual parking requirements for various uses. The parking ratios presented in this study were developed from published sources, namely:

The City of Vernon Zoning Bylaw No. 5000, 2003, Section 7.0

Suite 1000 840 Howe Street Vancouver, BC, Canada V6Z 2M1

T: +1 604 685-9381 F: +1 604 683-8655 wsp.com

wsp

- ✓ City of Kelowna Zoning Bylaw 8000, 2021
- ✓ City of Parksville Zoning and Development Bylaw, 1994, No. 2000
- ✓ City of Penticton Zoning Bylaw No.2017-08
- ✓ City of North Vancouver, Zoning Bylaw 1995, No. 6700
- ✓ ITE Parking Generation, 5th Edition (Washington, DC: Institute of Transportation Engineers (ITE), 2010)

CITY OF VERNON – PARKING REQUIREMENTS

The City of Vernon's vehicle off-street parking requirements are detailed in Zoning Bylaw No. 5000, 2003, specifically under Section 7.0. This requirement is summarized in Table 1 and illustrates that the proposed **117 vehicle parking spaces** do not meet the City's current requirements of **143 parking spaces**.

USE	VARIABLE	BYLAW PARKING RATIO	REQUIRED SPACES	PROPOSED SPACES	
One Bedroom Dwelling Unit	61 units	1.25 per 1-bedroom dwelling unit	76	95 (88 parkade parking and 7 surface	
Two Bedroom Dwelling Unit	30 units unit		45	parking)	
Retail Store	462 m ²	2 per 100 m ²	9	9 (surface parking)	
Visitor	91 units	1 Parking Space for every 7 dwelling units	13	13 (surface parking)	
Total	4	2	143	117	

Table 1 – City of Vernon Bylaw Parking Requirements

Based on the City of Vernon's Bicycle Bylaw Parking Requirements, the total required bicycle parking spaces for **Class I and Class II are 47 and 26 spaces**, respectively (Table 2). The developer is proposing to provide **60 Class I and 34 Class II bicycle spaces**.

Table 2 -- City of Vernon Bicycle Bylaw Parking Requirements

USE VARIABLE BYLAW PARKING RATIO REQU	JIRED SPACES PROPOSED SPACES
---------------------------------------	------------------------------

Apartment Housing	91 units	Class I: 0.5 per dwelling unit Class II: 0.25 per dwelling unit	Class I: 46 spaces Class II: 23 spaces	
Retail Store	462 m ²	Class I: 0.2 per 100 m ² Class II: 0.6 per 100 m ²	Class I: I space Class II: 3 spaces	-
Total	12	2	Class I: 47 spaces Class II: 26 spaces	Class I: 60 spaces Class II: 34 spaces

Based on the City of Vernon Zoning Bylaw No. 5000, under Section 7.0, **3 loading spaces** are required for this development (Table 3). The developer is proposing to provide **4 loading spaces**.

visp

USE	VARIABLE	BYLAW LOADING RATIO	REQUIRED SPACES	PROPOSED SPACES
Apartment Housing	7,728 m ²	1 per 2800m ² GFA	3	3
Retail Store	462 m ²	1 per 1900m ² GFA	0	1
Total			3	4

Table 3 -- City of Vernon Bylaw Loading Requirements

COMPARABLE CITIES – PARKING REQUIREMENTS

To analyze the reasonableness of the proposed 117 parking spaces for the proposed mixed-use development, parking requirements at four comparable municipalities in British Columbia were applied. The municipalities were selected based on similar available public transportation services in reference to the City of Vernon. Some of the selected municipalities for comparison purposes have identified mixed-use residential developments. Table 4 summarizes the number of parking spaces required if a mixed-use 91- rental unit residential development were to be built in each respective location.

Table 4 – Parking Requirements at Comparable Cities

MUNICIPALITY	USE	Variable	BYLAW PARKING RATIO	REQUIRED SPACES
	Apartment (1 Bedroom)	61	1.25 space per 1 bedroom dwelling unit	76
	Apartment (2+ Bedrooms)	30 1.5 space per 2 bedroom dwelling unit		45
City of Kelowna	Visitor Parking	91	0.14 space per dwelling unit	
	Retail	462sq.m.	*	13
and the second	Total	12. 46	Stranger Balande Ba	134
City of Parksville	Apartment including Visitor, Customer and Client Parking	91	1.5 space per dwelling unit	137
	Total			137
and the second second	Dwelling Unit in Commercial Building	91	1 space per dwelling unit	91
City of Penticton	Commercial	462sq.m.	1 per 50 sq.m.	9
20.00	Total			101
1 2.0	Rental Apartment Residential Use		0.6 space per dwelling unit	55
City of North	Visitor Parking	91	0.1 space per dwelling unit	9
Vancouver	Commercial	462sq.m.	1 per 50 sq.m.	9
	Total	building		73

*Notwithstanding Section 8.2.17, in mixed-use developments the parking spaces required for Offices and other commercial related land uses can be shared with the residential visitor parking requirements. Parking spaces must be available for both land uses (commercial and visitor) at all times.

As shown above, similar municipalities require **minimum 73 parking spaces and maximum 137 parking spaces** for similar land use. The visitor parking and the retail parking spaces required for the mixed-use residential development are either shared in these municipalities or part of the

112

required number of spaces for dwelling units. With reference to the four cities and parking requirements depicted in Table 4, the average required number of parking spaces is 111, lower than the 143 spaces required by the City of Vernon.

Also note that the proposed development's units are proposed to be all rentals. Based on the City of North Vancouver's zoning bylaw, the required number of parking spaces for rental units are expected to be 40% lower than non-rental units. Accordingly, a high-level estimate postulates that around 95 spaces will be required assuming that all the units are rentals.

ITE PARKING GENERATION, 5TH EDITION – PARKING REQUIREMENTS

The ITE Parking Generation, 5th Edition, (ITE: Washington, DC, 2020) provides guidelines to determined parking demand for proposed development. The maximum parking demand for the proposed mixed-use development is anticipated to be 115 spaces which is expected to be in December when the retail reaches its peak demand. The following assumptions are used for this study:

- The study location is "General Urban/Suburban" with no nearby rail transit.
- Based on the information provided by the Client, 10 of 31 "Unit C" units are affordable units ø which are incorporated into this study.
- The peak period of parking demand for retail (5 PM to 7 PM on a weekday) overlaps with the . peak of parking demand for residential (11 PM to 7 AM on a Saturday). This is a conservative approach.

The generated parking demand results are summarized in Table 5 below.

LAND USE	CODE	VARIABLE	RATIO	SPACES
Apartment Building	Multifamily Housing (Mid Rise) (221)	126 bedroom*	0.77 per bedroom	97
Affordable Housing	Affordable Housing (Income Limits) (223)	10 Affordable Units	0.66 per unit	7
Retail	Variety Store (814)	4,975 Sq.ft.	2.31 per 1000 sq.ft.	11
* Den is assumed	to be half bedroom		TOTAL	115

Table 5 – ITE Parking Generation Parking Requirements

Den is assumed to be nall bear

INCENTIVES TO REDUCE PARKING DEMAND

Reducing the parking supply and efficiently managing parking provided would greatly benefit the City of Vernon in the long-term. Accommodating the expected future regional growth by incorporation high density land-use, sustainable modes of transportation, and reduced parking

wsp

requirements will encourage non-auto transportation modes which is aligned with the City of Vernon's Transportation Demand Management (TDM) Strategy. Based on the City of Vernon's TDM strategy, the active modes of transportation are targeted to increase to 38% in 2040 from 30% in 2013. On the other hand, parking induces further driving. Automobile dependency increases driving and road congestion. Therefore, there is a range of incentives for reducing parking demands for this development. The recommended workable solution for managing parking on this development is to provide on-site secure cycling storage. The developer is proposing to provide **60 Class I and 34 Class II bicycle spaces**.

FURTHER STUDIES

It is noted in the City of Vernon's "25 Year Master Transportation Plan" (MTP) prepared in 2013 that the demographics of the City of Vernon and vehicle use trends are changing. The two largest age groups in Vernon are the baby boomers (born between 1946 and 1964) and millennials (born between 1980 and 2004). For different reasons both groups are reducing vehicle use and ownership. As people retire their vehicle usage reduces by 40%. Vernon has a higher proportion of seniors, aged 65 and older, than the British Columbia average, a trend that is projected to continue. These residents will need routes with pedestrian facilities, suitable ramps at crosswalks and accessible transit. Pedestrian facilities such as sidewalks enable all residents, including those with mobility impairments, to access nearby services or the fully accessible transit network. The expected increase in the numbers of mobility scooters and motorised wheelchairs must also be accommodated. The millennials use social networking to a greater extent and tend to prefer to live where they can walk, cycle or take transit to work resulting in a reduced vehicle usage and a deferral of vehicle ownership. Based on the information provided by the Client, the expected residence of the proposed development will include:

- 40% of tenants are expected to be Baby Boomers
- 30% of the tenants are expected to be Geneartion X
- 30% of the tenants are expected to be Millennials

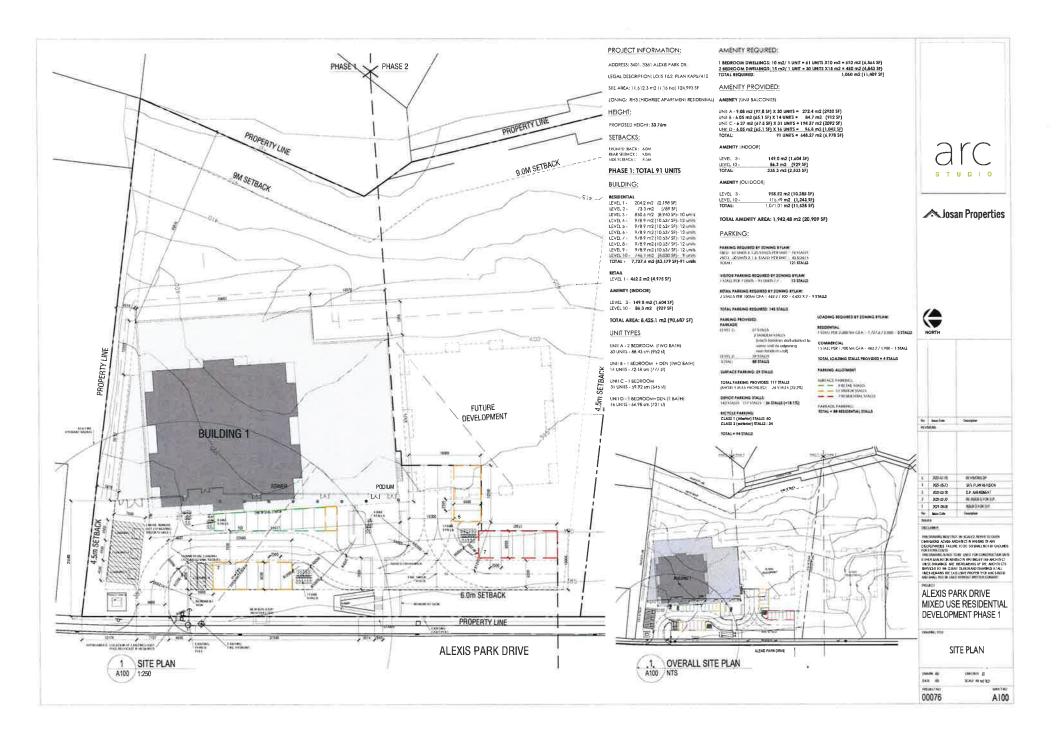
So, the majority of the expected residence of the proposed development are to be baby boomers and millennials, and both groups are reducing vehicle use and ownership based on the MTP prepared in 2013. Consequently, it is expected that fewer parking stalls will be required than the number of parking spaces required by the City of Vernon Zoning Bylaw No. 5000 (2003). A high-level estimate postulates that around 120 spaces will be required assuming that if the 40% baby boomer tenants retire, their vehicle usage reduces by 40%.

wsp

SUMMARY

- The City of Vernon zoning bylaw requires 143 vehicle parking spaces while the current proposed development plan shows 117 vehicle parking spaces.
- Based on the City of Vernon Zoning Bylaw No. 5000, under Section 7.0, 3 loading spaces are required for this development. The developer is proposing to provide 4 loading spaces.
- Similar municipalities require minimum 73 parking spaces and maximum 137 parking spaces for similar land use. The visitor parking and the retail parking spaces required for the mixed-use residential development are either shared in these municipalities or part of the required number of spaces for dwelling units. With reference to the four cities and their parking requirements, the average required number of parking spaces is 111, lower than the 143 spaces required by the City of Vernon.
- The proposed development's units are proposed to be all rentals. Based on the City of North Vancouver's zoning bylaw, the required number of parking spaces for rental units are expected to be 40% lower than non-rental units. Accordingly, a high-level estimate postulates that around 95 spaces will be required assuming that all the units are rentals.
- The parking demand by the proposed development during peak parking occupancy hours is expected to be 115 spaces based on the Parking Generation Manual, 5th Edition occuring in December when the retail experiences its peak demand.
- There is a range of incentives for reducing parking demands for this development. The recommended workable solution for managing parking on this development is to provide on-site secure cycling storage. The developer is proposing to provide 60 Class I and 34 Class II bicycle spaces. Based on the City of Vernon's Bicycle Bylaw Parking Requirements, the total required bicycle parking spaces for Class I and Class II are 47 and 26 spaces, respectively.
- 40% of the expected residence of the proposed development are to be baby boomers and 30% to be millennials, and both groups are reducing vehicle use and ownership based on the City of Vernon's "25 Year Master Transportation Plan" prepared in 2013. Consequently, it is expected that fewer parking stalls will be required than the number of parking spaces required by the City of Vernon Zoning Bylaw No. 5000 (2003). A high-level estimate postulates that around 120 spaces will be required assuming that if the 40% baby boomer tenants retire, their vehicle usage reduces by 40%.

* * * * * *


We trust that this review has been completed to your satisfaction. If you have any questions regarding this memo, please contact me at 604.631.9671 or email me at souzan.saadat@wsp.com.

Yours sincerely,

Souzan Saadat, M.Eng., P.Eng., PTOE Transportation Planning Engineer SS

Engineers & Geoscientists BC Permit #1000200

